Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process
Loading...
Date
2019-01-01
Authors
Tang, Xiaolin
Zhang, Dejiu
Liu, Teng
Khajepour, Amir
Yu, Haisheng
Wang, Hong
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
In this paper, motor torque control methods are proposed to suppress the vibration of a dual-motor hybrid powertrain during start-stop operation. Firstly, a co-simulation ADAMS and MATLAB/SIMULINK model is built to study the dynamic characteristics of the hybrid vehicle during modes switching process. Secondly, a torque compensation control method of electric motors is established to compensate the vibration energy source. Thirdly, a vibration transfer path control is built to change the dynamic properties during the engine start-stop process. The results show that the proposed methods can reduce the longitudinal acceleration amplitude of the vehicle to less than 0.4 m/s2, which is only about 30% of the uncontrolled system, during the engine start process. While in the engine stop process, the longitudinal acceleration amplitude of the vehicle is reduced to less than 0.3 m/s2, and the vibration amplitude is only about 20% of the unchanged system. The established methods are effective for suppressing the vehicle vibration and controlling the energy during the modes switching.
Description
The final publication is available at Elsevier via https://doi.org/10.1016/j.energy.2018.10.130 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords
Energy control, Modes switching, Hybrid vehicle, Two-motor, Vibration control