Pure Mathematics
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/9932
This is the collection for the University of Waterloo's Department of Pure Mathematics.
Research outputs are organized by type (eg. Master Thesis, Article, Conference Paper).
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Pure Mathematics by Issue Date
Now showing 1 - 20 of 171
- Results Per Page
- Sort Options
Item Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R)(University of Waterloo, 1998) Gong, Ming-PengThis thesis is concerned with the classification of 7-dimensional nilpotent Lie algebras. Skjelbred and Sund have published in 1977 their method of constructing all nilpotent Lie algebras of dimension n given those algebras of dimension < n, and their automorphism groups. By using this method, we construct all nonisomorphic 7-dimensional nilpotent Lie algebras in the following two cases: (1) over an algebraically closed field of arbitrary characteristic except 2; (2) over the real field R. We have compared our lists with three of the most recent lists (those of Seeley, Ancochea-Goze, and Romdhani). While our list in case (1) over C differs greatly from that of Ancochea-Goze, which contains too many errors to be usable, it agrees with that of Seeley apart from a few corrections that should be made in his list, Our list in case (2) over R contains all the algebras on Romdhani's list, which omits many algebras.Item The Model Theory of Algebraically Closed Fields(University of Waterloo, 2000) Cook, DanielModel theory can express properties of algebraic subsets of complex n-space. The constructible subsets are precisely the first order definable subsets, and varieties correspond to maximal consistent collections of formulas, called types. Moreover, the topological dimension of a constructible set is equal to the Morley rank of the formula which defines it.Item Some Functional Equations Connected with the Utility of Gains and Losses(University of Waterloo, 2002) Titioura, AndreiThe behavioral properties shown by people when they make selections between different choices will be studied. Based on empirical and logical data a mathematical axiomatic model is built. D. Luce is a major contributor in this area. This thesis is based on his works and those of his many co-authors. Three approaches will be considered that lead to the rank-dependent utility representation of binary gambles composed only of gains (losses) relative to a status quo. The proofs involve the theory of functional equations which is a very powerful tool giving the precise numerical representations.Item Intervals with few Prime Numbers(University of Waterloo, 2004) Wolczuk, DanIn this thesis we discuss some of the tools used in the study of the number of primes in short intervals. In particular, we discuss a large sieve density estimate due to Gallagher and two classical delay equations. We also show how these tools have been used by Maier and Stewart and provide computational data to their result.Item Infinite Sets of D-integral Points on Projective Algebrain Varieties(University of Waterloo, 2005) Shelestunova, VeronikaLet X(K) ⊂ Pn (K) be a projective algebraic variety over K, and let D be a subset of PnOK such that the codimension of D with respect to X ⊂ PnOK is two. We are interested in points P on X(K) with the property that the intersection of the closure of P and D is empty in PnOK, we call such points D-integral points on X(K). First we prove that certain algebraic varieties have infinitely many D-integral points. Then we find an explicit description of the complete set of all D-integral points in projective n-space over Q for several types of D.Item Gröbner Bases Theory and The Diamond Lemma(University of Waterloo, 2006) Ge, WenfengCommutative Gröbner bases theory is well known and widely used. In this thesis, we will discuss thoroughly its generalization to noncommutative polynomial ring k<X> which is also an associative free algebra. We introduce some results on monomial orders due to John Lawrence and the author. We show that a noncommutative monomial order is a well order while a one-sided noncommutative monomial order may not be. Then we discuss the generalization of polynomial reductions, S-polynomials and the characterizations of noncommutative Gröbner bases. Some results due to Mora are also discussed, such as the generalized Buchberger's algorithm and the solvability of ideal membership problem for homogeneous ideals. At last, we introduce Newman's diamond lemma and Bergman's diamond lemma and show their relations with Gröbner bases theory.Item Multiplicities of Linear Recurrence Sequences(University of Waterloo, 2006) Allen, PatrickIn this report we give an overview of some of the major results concerning the multiplicities of linear recurrence sequences. We first investigate binary recurrence sequences where we exhibit a result due to Beukers and a result due to Brindza, Pintér and Schmidt. We then investigate ternary recurrences and exhibit a result due to Beukers building on work of Beukers and Tijdeman. The last two chapters deal with a very important result due to Schmidt in which we bound the zero-multiplicity of a linear recurrence sequence of order t by a function involving t alone. Moreover we improve on Schmidt's bound by making some minor changes to his argument.Item Counting points of bounded height on del Pezzo surfaces(University of Waterloo, 2006) Kleven, Stephaniedel Pezzo surfaces are isomorphic to either P1 x P1 or P2 blown up a times, where a ranges from 0 to 8. We will look at lines on del Pezzo surfaces isomorphic to P2 blown up a times with a ranging from 0 to 6. We will show that when we count points of bounded height on one of these surfaces, the number of points on lines give us the primary growth order, but the secondary growth order calculates the number of points on the rest of the surface and hence is a better representation of the geometry of the surface.Item On the Similarity of Operator Algebras to C*-Algebras(University of Waterloo, 2006) Georgescu, MagdalenaThis is an expository thesis which addresses the requirements for an operator algebra to be similar to a C*-algebra. It has been conjectured that this similarity condition is equivalent to either amenability or total reductivity; however, the problem has only been solved for specific types of operators.
We define amenability and total reductivity, as well as present some of the implications of these properties. For the purpose of establishing the desired result in specific cases, we describe the properties of two well-known types of operators, namely the compact operators and quasitriangular operators. Finally, we show that if A is an algebra of compact operators or of triangular operators then A is similar to a C* algebra if and only if it has the total reduction property.Item Reductions and Triangularizations of Sets of Matrices(University of Waterloo, 2006) Davidson, ColinFamilies of operators that are triangularizable must necessarily satisfy a number of spectral mapping properties. These necessary conditions are often sufficient as well. This thesis investigates such properties in finite dimensional and infinite dimensional Banach spaces. In addition, we investigate whether approximate spectral mapping conditions (being "close" in some sense) is similarly a sufficient condition.Item Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces(University of Waterloo, 2006) Hays, ChristopherLet Σg be a closed Riemann surface of genus g. Generalizing Ivan Smith's construction, for each g ≥ 1 and h ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σg ×Σh. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σg ×Σh.Item Maximal Operators in R^2(University of Waterloo, 2007-08-13T18:58:49Z) Choi, KeonA maximal operator over the bases $\mathcal{B}$ is defined as \[Mf(x) = \sup_{x \in B \in \mathcal{B}} \frac{1}{|B|}\int_B |f(y)|dy. \] The boundedness of this operator can be used in a number of applications including the Lebesgue differentiation theorem. If the bases are balls or rectangles parallel to the coordinate axes, the associated maximal operator is bounded from $L^p$ to $L^p$ for all $p>1$. On the other hand, Besicovitch showed that it is not bounded if the bases consists of arbitrary rectangles. In $\mathbb{R}^2$ we associate a subset $\Omega$ of the unit circle to the bases of rectangles in direction $\theta \in \Omega$. We examine the boundedness of the associated maximal operator $M_{\Omega}$ when $\Omega$ is lacunary, a finite sum of lacunary sets, or finite sets using the Fourier transform and geometric methods. The results are due to Nagel, Stein, Wainger, Alfonseca, Soria, Vargas, Karagulyan and Lacey.Item Higher-Dimensional Kloosterman Sums and the Greatest Prime Factor of Integers of the Form a_1a_2\cdots a_{k+1}+1(University of Waterloo, 2007-08-29T14:17:29Z) Wu, ShengliWe consider the greatest prime factors of integers of certain form.Item Amenability for the Fourier Algebra(University of Waterloo, 2007-08-29T16:56:45Z) Tikuisis, Aaron PeterThe Fourier algebra A(G) can be viewed as a dual object for the group G and, in turn, for the group algebra L1(G). It is a commutative Banach algebra constructed using the representation theory of the group, and from which the group G may be recovered as its spectrum. When G is abelian, A(G) coincides with L1(G^); for non-abelian groups, it is viewed as a generalization of this object. B. Johnson has shown that G is amenable as a group if and only if L1(G) is amenable as a Banach algebra. Hence, it is natural to expect that the cohomology of A(G) will reflect the amenability of G. The initial hypothesis to this effect is that G is amenable if and only if A(G) is amenable as a Banach algebra. Interestingly, it turns out that A(G) is amenable only when G has an abelian group of finite index, leaving a large class of amenable groups with non-amenable Fourier algebras. The dual of A(G) is a von Neumann algebra (denoted VN(G)); as such, A(G) inherits a natural operator space structure. With this operator space structure, A(G) is a completely contractive Banach algebra, which is the natural operator space analogue of a Banach algebra. By taking this additional structure into account, one recovers the intuition behind the first conjecture: Z.-J. Ruan showed that G is amenable if and only if A(G) is operator amenable. This thesis concerns both the non-amenability of the Fourier algebra in the category of Banach spaces and why Ruan's Theorem is actually the proper analogue of Johnson's Theorem for A(G). We will see that the operator space projective tensor product behaves well with respect to the Fourier algebra, while the Banach space projective tensor product generally does not. This is crucial to explaining why operator amenability is the right sort of amenability in this context, and more generally, why A(G) should be viewed as a completely contractive Banach algebra and not merely a Banach algebra.Item On Diagonal Acts of Monoids(University of Waterloo, 2007-08-30T14:45:24Z) Gilmour, Andrew JamesIn this paper we discuss what is known so far about diagonal acts of monoids. The first results that will be discussed comprise an overview of some work done on determining whether or not the diagonal act can be finitely generated or cyclic when looking at specific classes of monoids. This has been a topic of interest to a handful of semigroup theorists over the past seven years. We then move on to discuss some results pertaining to flatness properties of diagonal acts. The theory of flatness properties of acts over monoids has been of major interest over the past two decades, but so far there are no papers published on this subject that relate specifically to diagonal acts. We attempt to shed some light on this topic as well as present some new problems.Item A k-Conjugacy Class Problem(University of Waterloo, 2007-09-07T14:53:39Z) Roberts, CollinIn any group G, we may extend the definition of the conjugacy class of an element to the conjugacy class of a k-tuple, for a positive integer k. When k = 2, we are forming the conjugacy classes of ordered pairs, when k = 3, we are forming the conjugacy classes of ordered triples, etc. In this report we explore a generalized question which Professor B. Doug Park has posed (for k = 2). For an arbitrary k, is it true that: (G has finitely many k-conjugacy classes) implies (G is finite)? Supposing to the contrary that there exists an infinite group G which has finitely many k-conjugacy classes for all k = 1, 2, 3, ..., we present some preliminary analysis of the properties that G must have. We then investigate known classes of groups having some of these properties: universal locally finite groups, existentially closed groups, and Engel groups.Item On a Question of Wintner Concerning the Sequence of Integers Composed of Primes from a Given Set(University of Waterloo, 2007-09-27T13:53:20Z) Kim, JeongsooWe answer to a Wintner's question concerning the sequence of integers composed of primes from a given set. The results generalize and develop the answer to Wintner’s question due to Tijdeman.Item Posets of Non-Crossing Partitions of Type B and Applications(University of Waterloo, 2007-10-19T15:34:33Z) Oancea, IonThe thesis is devoted to the study of certain combinatorial objects called \emph{non-crossing partitions}. The enumeration properties of the lattice ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ of \emph{non-crossing partitions} were studied since the work of G. Kreweras in 1972. An important feature of ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$, observed by P. Biane in 1997, is that it embeds into the symmetric group $\mathfrak{S}_n$; via this embedding, ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ is canonically identified to the interval $[\varepsilon, \gamma_o] \subseteq \mathfrak{S}_n$ (considered with respect to a natural partial order on $\mathfrak{S}_n$), where $\varepsilon$ is the unit of $\mathfrak{S}_n$ and $\gamma_o$ is the forward cycle.\\ There are two extensions of the concept of non-crossing partitions that were considered in the recent research literature. On the one hand, V. Reiner introduced in 1997 the analogue of \emph{type B} for ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$. This poset is denoted \textsf{NC$^{\textsf{\,B}}$(n)} and it is isomorphic to the interval $[\varepsilon, \gamma_o]$ of the hyperoctahedral group $B_n$, where now $\gamma_o$ stands for the natural forward cycle of $B_n$. On the other hand, J. Mingo and A. Nica studied in 2004 a set of \emph{annular} non-crossing partitions (diagrams drawn inside an annulus -- unlike the partitions from ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ or from ${\textsf{NC$^{\textsf{\,B}}$(n)}}\,$, which are drawn inside a disc).\\ In this thesis the type B and annular objects are considered in a unified framework. The forward cycle of $B_n$ is replaced by a permutation which has two cycles, $\gamma= [1,2,\ldots,p][p+1,\ldots,p+q]$, where $p+q = n$. Two equivalent characterizations of the interval $[ \varepsilon , \gamma ] \subseteq B_n$ are found -- one of them is in terms of a \emph{genus inequality}, while the other is in terms of \emph{annular crossing patterns}. A corresponding poset \mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}} of \emph{annular non-crossing partitions of type B} is introduced, and it is proved that $[\varepsilon, \gamma] \simeq \mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$, where the partial order on $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$ is the usual reversed refinement order for partitions.\\ The posets $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$ are not lattices in general, but a remarkable exception is found to occur in the case when $q=1$. Moreover, it is shown that the meet operation in the lattice $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(n-1, 1)}\,}}$ is the usual ``intersection meet'' for partitions. Some results concerning the enumeration properties of this lattice are obtained, specifically concerning its rank generating function and its M\"{o}bius function.\\ The results described above in type B are found to also hold in connection to the Weyl groups of \emph{type D}. The poset \mbox{{\textsf{NC$^{\textsf{\,D}}$\,(n-1, 1)}\,\,}} turns out to be equal to the poset {\textsf{NC$^{\textsf{\,D}}$(n)}} constructed by C. Athanasiadis and V. Reiner in a paper in 2004. The non-crossing partitions of type D of Athanasiadis and Reiner are thus identified as annular objects.\\ Non-crossing partitions of type A are central objects in the combinatorics of free probability. A parallel concept of \emph{free independence of type B}, based on non-crossing partitions of type B, was proposed by P. Biane, F. Goodman and A. Nica in a paper in 2003. This thesis introduces a concept of \emph{scarce $\mathbb{G}$-valued probability spaces}, where $\mathbb{G}$ is the algebra of Gra{\ss}man numbers, and recognizes free independence of type B as free independence in the ``scarce $\mathbb{G}$-valued'' sense.Item Lehmer Numbers with at Least 2 Primitive Divisors(University of Waterloo, 2007-10-24T15:47:52Z) Juricevic, RobertIn 1878, Lucas \cite{lucas} investigated the sequences $(\ell_n)_{n=0}^\infty$ where $$\ell_n=\frac{\alpha^n-\beta^n}{\alpha-\beta},$$ $\alpha \beta$ and $\alpha+\beta$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. Lucas sequences are divisibility sequences; if $m|n$, then $\ell_m|\ell_n$, and more generally, $\gcd(\ell_m,\ell_n)=\ell_{\gcd(m,n)}$ for all positive integers $m$ and $n$. Matijasevic utilised this divisibility property of Lucas sequences in order to resolve Hilbert's 10th problem. \noindent In 1930, Lehmer \cite{lehmer} introduced the sequences $(u_n)_{n=0}^\infty$ where \begin{eqnarray*} u_n& = & \frac{\alpha^{n}-\beta^n}{\alpha^{\epsilon(n)}-\beta^{\epsilon(n)}},\\ \epsilon(n)&=&\left\{\begin{array}{ll} 1, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 1 \pmod 2;\\ 2, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 0\pmod 2;\end{array}\right. \end{eqnarray*} $\alpha \beta$ and $(\alpha +\beta)^2$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. The sequences $(u_n)_{n=0}^\infty$ are known as Lehmer sequences, and the terms of these sequences are known as Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to those of Lucas sequences, and he used them to extend the Lucas test for primality. \noindent We define a prime divisor $p$ of $u_n$ to be a primitive divisor of $u_n$ if $p$ does not divide $$(\alpha^2-\beta^2)^2u_3\cdots u_{n-1}.$$ Note that in the list of prime factors of the first $n-1$ terms of the sequence $(u_n)_{n=0}^\infty$, a primitive divisor of $u_n$ is a new prime factor. \noindent We let \begin{eqnarray*} \kappa& = & k(\alpha \beta\max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}),\\ \eta & = & \left\{\begin{array}{ll}1\hspace{.1in}\mbox{if}\hspace{.1in}\kappa\equiv 1\pmod 4,\\ 2\hspace{.1in}\mbox{otherwise},\end{array}\right. \end{eqnarray*} where $k(\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\})$ is the squarefree kernel of $\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}$. On the one hand, building on the work of Schinzel \cite{schinzelI}, we prove that if $n>4$, $n\neq 6$, $n/(\eta \kappa)$ is an odd integer, and the triple $(n,\alpha,\beta)$, in case $(\alpha-\beta)^2>0$, is not equivalent to a triple $(n,\alpha,\beta)$ from an explicit table, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. Moreover, we prove that if $n\geq 1.2\times 10^{10}$, and $n/(\eta \kappa)$ is an odd integer, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. On the other hand, building on the work of Stewart \cite{stewart77}, we prove that there are only finitely many triples $(n,\alpha,\beta)$, where $n>6$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, such that the $n$th Lehmer number $u_n$ has less than two primitive divisors, and that these triples may be explicitly determined. We determine all of these triples $(n,\alpha,\beta)$ up to equivalence explicitly when $66$, $n\neq 12$, are best possible, subject to the truth of two plausible conjectures.Item Spectral Analysis of Laplacians on Certain Fractals(University of Waterloo, 2007-12-06T21:17:45Z) Zhou, DenglinSurprisingly, Fourier series on certain fractals can have better convergence properties than classical Fourier series. This is a result of the existence of gaps in the spectrum of the Laplacian. In this work we prove a general criterion for the existence of gaps. Most of the known examples on which the Laplacians admit spectral decimation satisfy the criterion. Then we analyze the infinite family of Vicsek sets, finding an explicit formula for the spectral decimation functions in terms of Chebyshev polynomials. The Laplacians on this infinite family of fractals are also shown to satisfy our criterion and thus have gaps in their spectrum.