The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Posets of Non-Crossing Partitions of Type B and Applications

Loading...
Thumbnail Image

Authors

Oancea, Ion

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The thesis is devoted to the study of certain combinatorial objects called \emph{non-crossing partitions}. The enumeration properties of the lattice ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ of \emph{non-crossing partitions} were studied since the work of G. Kreweras in 1972. An important feature of ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$, observed by P. Biane in 1997, is that it embeds into the symmetric group $\mathfrak{S}_n$; via this embedding, ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ is canonically identified to the interval $[\varepsilon, \gamma_o] \subseteq \mathfrak{S}_n$ (considered with respect to a natural partial order on $\mathfrak{S}_n$), where $\varepsilon$ is the unit of $\mathfrak{S}_n$ and $\gamma_o$ is the forward cycle.\\ There are two extensions of the concept of non-crossing partitions that were considered in the recent research literature. On the one hand, V. Reiner introduced in 1997 the analogue of \emph{type B} for ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$. This poset is denoted \textsf{NC$^{\textsf{\,B}}$(n)} and it is isomorphic to the interval $[\varepsilon, \gamma_o]$ of the hyperoctahedral group $B_n$, where now $\gamma_o$ stands for the natural forward cycle of $B_n$. On the other hand, J. Mingo and A. Nica studied in 2004 a set of \emph{annular} non-crossing partitions (diagrams drawn inside an annulus -- unlike the partitions from ${\textsf{NC$^{\textsf{\,A}}$(n)}}\,$ or from ${\textsf{NC$^{\textsf{\,B}}$(n)}}\,$, which are drawn inside a disc).\\ In this thesis the type B and annular objects are considered in a unified framework. The forward cycle of $B_n$ is replaced by a permutation which has two cycles, $\gamma= [1,2,\ldots,p][p+1,\ldots,p+q]$, where $p+q = n$. Two equivalent characterizations of the interval $[ \varepsilon , \gamma ] \subseteq B_n$ are found -- one of them is in terms of a \emph{genus inequality}, while the other is in terms of \emph{annular crossing patterns}. A corresponding poset \mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}} of \emph{annular non-crossing partitions of type B} is introduced, and it is proved that $[\varepsilon, \gamma] \simeq \mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$, where the partial order on $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$ is the usual reversed refinement order for partitions.\\ The posets $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(p, q)}\,}}$ are not lattices in general, but a remarkable exception is found to occur in the case when $q=1$. Moreover, it is shown that the meet operation in the lattice $\mbox{{\textsf{NC$^{\textsf{\,B}}$\,(n-1, 1)}\,}}$ is the usual ``intersection meet'' for partitions. Some results concerning the enumeration properties of this lattice are obtained, specifically concerning its rank generating function and its M\"{o}bius function.\\ The results described above in type B are found to also hold in connection to the Weyl groups of \emph{type D}. The poset \mbox{{\textsf{NC$^{\textsf{\,D}}$\,(n-1, 1)}\,\,}} turns out to be equal to the poset {\textsf{NC$^{\textsf{\,D}}$(n)}} constructed by C. Athanasiadis and V. Reiner in a paper in 2004. The non-crossing partitions of type D of Athanasiadis and Reiner are thus identified as annular objects.\\ Non-crossing partitions of type A are central objects in the combinatorics of free probability. A parallel concept of \emph{free independence of type B}, based on non-crossing partitions of type B, was proposed by P. Biane, F. Goodman and A. Nica in a paper in 2003. This thesis introduces a concept of \emph{scarce $\mathbb{G}$-valued probability spaces}, where $\mathbb{G}$ is the algebra of Gra{\ss}man numbers, and recognizes free independence of type B as free independence in the ``scarce $\mathbb{G}$-valued'' sense.

Description

LC Subject Headings

Citation