Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces
Loading...
Date
2006
Authors
Hays, Christopher
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head>
Let Σ<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> ≥ 1 and <em>h</em> ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>.
Description
Keywords
Mathematics, Symplectic Manifolds, Isotopy Problem, Branched Covers