UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Cleavable Molecular Beacon for Hg2+ Detection based on Phosphorothioate RNA Modifications

Loading...
Thumbnail Image

Date

2015-06-10

Authors

Huang, Po-Jung Jimmy
Wang, Feng
Liu, Juewen

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Mercury is a highly toxic heavy metal, and detection of Hg2+ by biosensors has attracted extensive research interest in the past decade. In particular, a number of DNA-based sensing strategies have been developed. Well-known examples include thymine-Hg2+ interactions and Hg2+-activated DNAzymes. However, these mechanisms are highly dependent on buffer conditions or require hybridization with another DNA strand. Herein, we report a new mechanism based on Hg2+-induced cleavage of phosphorothioate (PS) modified RNA. Among the various metal ions tested, Hg2+ induced the most significant cleavage (∼16%), while other metals cleaved less than 2% of the same substrate. The uncleaved substrate undergoes desulfurization in the presence of Hg2+. This cleavage reaction yields a similar amount of product from pH 3.5 to 7 and in the temperature range between 20 and 90 °C. Various PS RNA junctions can be cleaved with a similar efficiency, but PS DNA junctions cannot be cleaved. A molecular beacon containing three PS RNA modifications is designed, detecting Hg2+ down to 1.7 nM with excellent selectivity. This sensor can also detect Hg2+ in the Lake Ontario water sample, although its response is significantly masked by fish tissues.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/ 10.1021/acs.analchem.5b01362

Keywords

RNA, Cleavage, Mercury, Phosphorothioate

LC Keywords

Citation