Novelty Detection in Airport Baggage Conveyor Gear-Motors Using Synchro-Squeezing Transform and Self-Organizing Maps
dc.contributor.author | Hazra, Budhaditya | |
dc.contributor.author | Pantula, Shilpa | |
dc.contributor.author | Narasimhan, Sriram | |
dc.date.accessioned | 2018-03-05T15:07:48Z | |
dc.date.available | 2018-03-05T15:07:48Z | |
dc.date.issued | 2013 | |
dc.description.abstract | A powerful continuous wavelet transform based signal processing tool named Synchro-squeezing transform (SST) has recently emerged in the context of non-stationary signal processing. Founded upon the premise of time-frequency (TF) reassignment, its basic objective is to provide a sharper representation of signals in the TF plane. Additionally, it can also extract the individual components of a non-stationary multi-component signal, which makes it attractive for rotating machinery signals. This work utilizes the decomposing power of SST transform to extract useful components from gear-motor signals in relevant sub-bands, followed by the application of standard rotating machinery condition indicators. For timely detection of faults in airport baggage conveyor gear-motors, a novelty detection technique based on the concept of self-organizing maps (SOM) is applied on the condition indicators. This approach promises improved anomaly detection performance than that can be achieved by applying condition indicators and SOM directly to the inherently complex raw-data. Data collected from conveyor gear-motors provides a test bed to demonstrate the efficacy of the proposed approach. | en |
dc.identifier.uri | http://hdl.handle.net/10012/13029 | |
dc.language.iso | en | en |
dc.publisher | Prognostic and Health Management Society | en |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | rotating machinery | en |
dc.subject | Data-driven methods for fault detection | en |
dc.subject | diagnosis, and prognosis | en |
dc.title | Novelty Detection in Airport Baggage Conveyor Gear-Motors Using Synchro-Squeezing Transform and Self-Organizing Maps | en |
dc.type | Conference Paper | en |
dcterms.bibliographicCitation | Hazra, B., Pantula, S., and Narasimhan, S. (2013). "Novelty detection in airport baggage conveyor gear-motors using Synchro-squeezing transform and Self-organizing maps," PHM Society Conference, New Orleans, Louisiana, Oct 14-17. | en |
uws.contributor.affiliation1 | Faculty of Engineering | en |
uws.contributor.affiliation2 | Civil and Environmental Engineering | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
uws.typeOfResource | Text | en |