On the evaluation of some sparse polynomials

dc.contributor.authorSchost, Eric
dc.contributor.authorNogneng, Dorian
dc.contributor.authorNogneng, Dorian
dc.date.accessioned2023-03-21T19:03:04Z
dc.date.available2023-03-21T19:03:04Z
dc.date.issued2018
dc.description.abstractWe give algorithms for the evaluation of sparse polynomials of the form P=p0 + p1 x + p2 x^4 + ... + p_{n-1} x^{(N-1)^2} for various choices of coefficients . First, we take p_i=p^i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we obtain a cost quasi-linear in sqrt{N}. We present experimental results that show the good behavior of this algorithm in a floating-point context, for the computation of Jacobi theta functions. Next, we consider the case of arbitrary coefficients; for this problem, we study the question of multiple evaluation: we show that one can evaluate such a polynomial at N values in the base ring in subquadratic time.en
dc.identifier.urihttps://doi.org/10.1090/mcom/3231
dc.identifier.urihttp://hdl.handle.net/10012/19220
dc.language.isoenen
dc.publisherAmerican Mathematical Societyen
dc.relation.ispartofseriesMathematics of Computatation;
dc.subjectsparse polynomialsen
dc.subjectevaluationen
dc.titleOn the evaluation of some sparse polynomialsen
dc.typeArticleen
dcterms.bibliographicCitationNogneng, D., & Schost, É. (2017). On the evaluation of some sparse polynomials. Mathematics of Computation, 87(310), 893–904. https://doi.org/10.1090/mcom/3231en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2David R. Cheriton School of Computer Scienceen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SparseEvaluation.pdf
Size:
294.27 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: