UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Assessment and validation of liquid breakup models for high-pressure dense diesel sprays

Loading...
Thumbnail Image

Date

2016-06-01

Authors

Ren, Yi
Li, Xianguo

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Liquid breakup in fuel spray and atomization significantly affects the consequent mixture formation, combustion behavior, and emission formation processes in a direct injection diesel engine. In this paper, different models for liquid breakup processes in high-pressure dense diesel sprays and its impact on multi-dimensional diesel engine simulation have been evaluated against experimental observations, along with the influence of the liquid breakup models and the sensitivity of model parameters on diesel sprays and diesel engine simulations. It is found that the modified Kelvin-Helmholtz (KH)–Rayleigh-Taylor (RT) breakup model gives the most reasonable predicted results in both engine simulation and high-pressure diesel spray simulation. For the standard KH-RT model, the model constant C bl for the breakup length has a significant effect on the predictability of the model, and a fixed value of the constant C bl cannot provide a satisfactory result for different operation conditions. The Taylor-analogybreakup (TAB) based models and the RT model do not provide reasonable predictions for the characteristics of high-pressure sprays and simulated engine performance and emissions.

Description

The final publication is available at Springer via https://dx.doi.org/10.1007/s11708-016-0407-9

Keywords

breakup model, diesel engine, high-pressure injection, simulations

LC Keywords

Citation