The asymptotic estimates and Hasse principle for multidimensional Waring's problem

dc.contributor.authorKuo, Wentang
dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorZhao, Xiaomei
dc.date.accessioned2023-10-03T14:57:14Z
dc.date.available2023-10-03T14:57:14Z
dc.date.issued2019-09-07
dc.descriptionThis article is made available through Elsevier's Open Archive https://doi.org/10.1016/j.aim.2019.06.028. © 2019 Elsevier Inc. All rights reserved.en
dc.description.abstractMotivated by the asymptotic estimates and Hasse principle for multidimensional Waring's problem via the circle method, we prove for the first time that the corresponding singular series is bounded below by an absolute positive constant without any nonsingular local solubility assumption. The number of variables we need is near-optimal. By proving a more general uniform density result over certain complete discrete valuation rings with finite residue fields, we also establish uniform lower bounds for both singular series and singular integral in Fq[t]. We thus obtain asymptotic formulas and the Hasse principle for multidimensional Waring's problem in Fq[t] via a variant of the circle method.en
dc.description.sponsorshipNSERC Discovery Grant, No. RGPIN-2015-03709 || NSERC Discovery Grant, RGPIN-2016-03720 || National Natural Science Foundation of China, Grant No. 11201163.en
dc.identifier.urihttps://doi.org/10.1016/j.aim.2019.06.028
dc.identifier.urihttp://hdl.handle.net/10012/19991
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesAdvances in Mathematics;353
dc.subjectWaring's problemen
dc.subjectHardy-Littlewood methoden
dc.subjectHasse principleen
dc.titleThe asymptotic estimates and Hasse principle for multidimensional Waring's problemen
dc.typeArticleen
dcterms.bibliographicCitationKuo, W., Liu, Y.-R., & Zhao, X. (2019). The asymptotic estimates and Hasse principle for multidimensional Waring’s problem. Advances in Mathematics, 353, 1–66. https://doi.org/10.1016/j.aim.2019.06.028en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
7-published.pdf
Size:
829.76 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: