The asymptotic estimates and Hasse principle for multidimensional Waring's problem
| dc.contributor.author | Kuo, Wentang | |
| dc.contributor.author | Liu, Yu-Ru | |
| dc.contributor.author | Zhao, Xiaomei | |
| dc.date.accessioned | 2023-10-03T14:57:14Z | |
| dc.date.available | 2023-10-03T14:57:14Z | |
| dc.date.issued | 2019-09-07 | |
| dc.description | This article is made available through Elsevier's Open Archive https://doi.org/10.1016/j.aim.2019.06.028. © 2019 Elsevier Inc. All rights reserved. | en |
| dc.description.abstract | Motivated by the asymptotic estimates and Hasse principle for multidimensional Waring's problem via the circle method, we prove for the first time that the corresponding singular series is bounded below by an absolute positive constant without any nonsingular local solubility assumption. The number of variables we need is near-optimal. By proving a more general uniform density result over certain complete discrete valuation rings with finite residue fields, we also establish uniform lower bounds for both singular series and singular integral in Fq[t]. We thus obtain asymptotic formulas and the Hasse principle for multidimensional Waring's problem in Fq[t] via a variant of the circle method. | en |
| dc.description.sponsorship | NSERC Discovery Grant, No. RGPIN-2015-03709 || NSERC Discovery Grant, RGPIN-2016-03720 || National Natural Science Foundation of China, Grant No. 11201163. | en |
| dc.identifier.uri | https://doi.org/10.1016/j.aim.2019.06.028 | |
| dc.identifier.uri | http://hdl.handle.net/10012/19991 | |
| dc.language.iso | en | en |
| dc.publisher | Elsevier | en |
| dc.relation.ispartofseries | Advances in Mathematics;353 | |
| dc.subject | Waring's problem | en |
| dc.subject | Hardy-Littlewood method | en |
| dc.subject | Hasse principle | en |
| dc.title | The asymptotic estimates and Hasse principle for multidimensional Waring's problem | en |
| dc.type | Article | en |
| dcterms.bibliographicCitation | Kuo, W., Liu, Y.-R., & Zhao, X. (2019). The asymptotic estimates and Hasse principle for multidimensional Waring’s problem. Advances in Mathematics, 353, 1–66. https://doi.org/10.1016/j.aim.2019.06.028 | en |
| uws.contributor.affiliation1 | Faculty of Mathematics | en |
| uws.contributor.affiliation2 | Pure Mathematics | en |
| uws.peerReviewStatus | Reviewed | en |
| uws.scholarLevel | Faculty | en |
| uws.typeOfResource | Text | en |