Colourings, generics, and free amalgams
dc.contributor.author | Bonato, Athony Christopher John | en |
dc.date.accessioned | 2006-07-28T19:43:35Z | |
dc.date.available | 2006-07-28T19:43:35Z | |
dc.date.issued | 1998 | en |
dc.date.submitted | 1998 | en |
dc.description.abstract | We study free amalgamation classes over a finite relational language and their applications to the model companions of 'v 1 classes over a finite relational language. If an 'v 1 class K is a free amalgamation class over a finite relational language with edges, the model companion os nqfa(1): non-finitely axiomatizable een modulo axioms asserting "I embed all finite structures in K". Further, there is a structure in K isometrically embedding each countable structure in K (relative to the least path metric on the graphs of structures in K). We study colour classes in 'v 1 free amalgamation classes over a finite relational language and their model companions. We find sufficient conditions for the model companion of a colour class to exist: when the model companion exists, it has a theory equal to the theory of a generic structure and is nqfa(1). | en |
dc.format | application/pdf | en |
dc.format.extent | 3762966 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/295 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 1998, Bonato, Athony Christopher John. All rights reserved. | en |
dc.subject | Harvested from Collections Canada | en |
dc.title | Colourings, generics, and free amalgams | en |
dc.type | Doctoral Thesis | en |
uws-etd.degree | Ph.D. | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1