UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The Use of Random Forests to Identify Brain Regions on Amyloid and FDG PET Associated With MoCA Score

Loading...
Thumbnail Image

Date

2020-06

Authors

Zukotynski, Katherine
Gaudet, Vincent C.
Kuo, Phillip H.
Adamo, Sabrina
Goubran, Maged
Scott, Christopher J.M.
Bocti, Christian
Borrie, Michael
Chertkow, Howard
Frayne, Richard

Journal Title

Journal ISSN

Volume Title

Publisher

Wolters Kluwer Health

Abstract

Purpose: The aim of this study was to evaluate random forests (RFs) to identify ROIs on 18F-florbetapir and 18F-FDG PET associated with Montreal Cognitive Assessment (MoCA) score. Materials and Methods: Fifty-seven subjects with significant white matter disease presenting with either transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, enrolled in a mul- ticenter prospective observational trial, had MoCA and 18F-florbetapir PET; 55 had 18F-FDG PET. Scans were processed using the MINC toolkit to gen- erate SUV ratios, normalized to cerebellar gray matter (18F-florbetapir PET), or pons (18F-FDG PET). SUV ratio data and MoCA score were used for su- pervised training of RFs programmed in MATLAB. Results: 18F-Florbetapir PETs were randomly divided into 40 training and 17 testing scans; 100 RFs of 1000 trees, constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: right posterior cingulate gyrus, right anterior cingulate gyrus, left precuneus, left posterior cingulate gyrus, and right precuneus. Amyloid in- creased with decreasing MoCA score. 18F-FDG PETs were randomly di- vided into 40 training and 15 testing scans; 100 RFs of 1000 trees, each tree constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: left fusiform gyrus, left precuneus, left posterior cingulate gyrus, right precuneus, and left middle orbitofrontal gyrus. 18F-FDG decreased with decreasing MoCA score. Conclusions: Random forests help pinpoint clinically relevant ROIs associ- ated with MoCA score; amyloid increased and 18F-FDG decreased with de- creasing MoCA score, most significantly in the posterior cingulate gyrus.

Description

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

Keywords

amyloid, F-FDG, PET, random forest, Montreal Cognitive Assessment score

LC Keywords

Citation