Show simple item record

dc.contributor.authorTadepalli, Susmita
dc.date.accessioned2023-09-21 16:06:27 (GMT)
dc.date.available2023-09-21 16:06:27 (GMT)
dc.date.issued2023-09-21
dc.date.submitted2023-09-19
dc.identifier.urihttp://hdl.handle.net/10012/19906
dc.description.abstractThis thesis presents a model of a Predictable Accelerator-rich System-on-Chip (PASoC) for safety-critical systems, which guarantees timing predictability of a memory access in the system. Earlier adoption of accelerator-rich SoCs was for general-purpose comput ing and thus timing predictability of such systems was not well explored, despite being used in safety-critical systems. This thesis takes initial steps in exploring the predictabil ity of ASoCs by combining CPU clusters with one or more hardware accelerators. The PASoC allows the integration of multiple coherent agents to interact with each other over a shared memory bus and a shared LLC. These agents can be a cluster of cache-coherent homogeneous cores, and fully or one-way coherent hardware accelerators. PASoC ensures the predictability of a memory request through some modifications in hardware architecture and cache coherence protocols. PASoC supports predictable cache coherence within the cluster of cores and across agents. The former uses linear cache coherence, and the latter uses a modified version of predictable Modified Shared Invalid (MSI) cache coherence pro tocol. PASoC analyzes the per-request worst-case latency of a memory request from any of the agents and evaluates the design on the gem5 simulator. Finally, this work presents some observations based on the analysis that can help in future designs of PASoCs.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectComputer Architectureen
dc.subjectHeterogeneous systemsen
dc.subjectSystem-on-chipen
dc.subjectReal-time system architectureen
dc.subjectSafety-crtitical systemsen
dc.titlePASoC: A Predictable Accelerator Rich SoC for Safety-Critical Systemsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorPatel, Hiren
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages