UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The Sandwich Problem for Decompositions and Almost Monotone Properties

Loading...
Thumbnail Image

Date

2018

Authors

Chudnovsky, Maria
Figueiredo, Celina Miraglia Herrera de
Spirkl, Sophie

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature

Abstract

We consider the graph sandwich problem and introduce almost monotone properties, for which the sandwich problem can be reduced to the recognition problem. We show that the property of containing a graph in C as an induced subgraph is almost monotone if C is the set of thetas, the set of pyramids, or the set of prisms and thetas. We show that the property of containing a hole of length ≡ j mod n is almost monotone if and only if j ≡ 2 mod n or n ≤ 2. Moreover, we show that the imperfect graph sandwich problem, also known as the Berge trigraph recognition problem, can be solved in polynomial time. We also study the complexity of several graph decompositions related to perfect graphs, namely clique cutset, (full) star cutset, homogeneous set, homogeneous pair, and 1-join, with respect to the partitioned and unpartitioned probe problems. We show that the clique cutset and full star cutset unpartitioned probe problems are NP-hard. We show that for these five decompositions, the partitioned probe problem is in P, and the homogeneous set, 1-join, 1-join in the complement, and full star cutset in the complement unpartitioned probe problems can be solved in polynomial time as well.

Description

This is a post-peer-review, pre-copyedit version of an article published in Algorithmica. The final authenticated version is available online at: https://doi.org/10.1007/s00453-018-0409-6

Keywords

graph theory, graph algorithms, sandwich problem, probe problem, trigraphs, graph decompositions

LC Keywords

Citation