UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Best response dynamics improve sustainability and equity outcomes in common-pool resources problems, compared to imitation dynamics

Loading...
Thumbnail Image

Date

2021-01-21

Authors

Farahbakhsh, Isaiah
Bauch, Chris T.
Anand, Madhur

Journal Title

Journal ISSN

Volume Title

Publisher

Journal of Theoretical Biology

Abstract

Shared resource extraction among profit-seeking individuals involves a tension between individual benefit and the collective well-being represented by the persistence of the resource. Many game theoretic models explore this scenario, but these models tend to assume either best response dynamics (where individuals instantly switch to better paying strategies) or imitation dynamics (where individuals copy successful strategies from neighbours), and do not systematically compare predictions under the two assumptions. Here we propose an iterated game on a social network with payoff functions that depend on the state of the resource. Agents harvest the resource, and the strategy composition of the population evolves until an equilibrium is reached. The system is then repeatedly perturbed and allowed to re-equilibrate. We compare model predictions under best response and imitation dynamics. Compared to imitation dynamics, best response dynamics increase sustainability of the system, the persistence of cooperation while decreasing inequality and debt corresponding to the Gini index in the agents' cumulative payoffs. Additionally, for best response dynamics, the number of strategy switches before equilibrium fits a power-law distribution under a subset of the parameter space, suggesting the system is in a state of self-organized criticality. We find little variation in most mean results over different network topologies; however, there is significant variation in the distributions of the raw data, equality of payoff, clustering of like strategies and power-law fit. We suggest the primary mechanisms driving the difference in sustainability between the two strategy update rules to be the clustering of like strategies as well as the time delay imposed by an imitation processes. Given the strikingly different outcomes for best response versus imitation dynamics for common-pool resource systems, our results suggest that modellers should choose strategy update rules that best represent decision-making in their study systems.

Description

Keywords

evolutionary game theory, network game theory, tragedy of the commons, self-organized criticality, human-environment systems, social-ecological systems, coupled human-and-natural systems

LC Keywords

Citation