Show simple item record

dc.contributor.authorAzmy, Karem
dc.contributor.authorKendall, Brian
dc.contributor.authorBrand, Uwe
dc.contributor.authorStouge, Svend
dc.contributor.authorGordon, Gwyneth W.
dc.date.accessioned2018-09-10 18:31:48 (GMT)
dc.date.available2018-09-10 18:31:48 (GMT)
dc.date.issued2015-12-15
dc.identifier.urihttps://doi.org/10.1016/j.palaeo.2015.09.014
dc.identifier.urihttp://hdl.handle.net/10012/13775
dc.descriptionThe final publication is available at Elsevier via https://doi.org/10.1016/j.palaeo.2015.09.014 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractLime mudstone samples (rhythmites) were collected at high resolution from outcrops of the Cambrian–Ordovician GSSP boundary section at Green Point (western Newfoundland, Canada). The sequence (~45 mthick) consists of slope carbonates with alternating shale and siltstone interbeds, and it spans the boundary located between the Martin Point and Broom Point members of the Green Point Formation (Cow Head Group). Samples were extracted frommicritic rhythmites by microdrilling and subsequently screened using petrographic and geochemical criteria to evaluate their degree of preservation. Although the δ13Corg profile (−29.7 to−25.6‰ VPDB) shows insignificant variations, the TOC values (0.1 to 4.1%) exhibit a generally upward decreasing trend. A negative δ13Ccarb excursion, reflecting a sealevel rise, marks a geochemical anomaly that correlates with an increase in the N contents (0 to 2.9%) of organic matter and the δ15Norg values (−0.6 to +6.0‰), which suggests a change to more reducing oceanic conditions. The U contents vary from 0.1 to 3.0 ppm and the δ238U values (−0.97 to −0.18‰) generally decrease with the negative δ13Ccarb excursion. The U isotopic variations suggest a widespread increase in reducing conditions associated with sealevel rise during this interval. The investigated sedimentary rocks were slope carbonateswhere dysoxic conditions likely dominated throughout the entire section. Therefore, the changes in the TOC, N, δ15Norg, and δ238U profiles across the boundary are not as sharp as would be expected by a local change from oxic shallow-water to dysoxic/anoxic deep-water settings.en
dc.description.sponsorshipPetroleum Exploration Enhancement Program (PEEP) NSERC Discovery Grant || (RGPIN-435930) Carlsberg Foundation || (2013_01_0664)en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleRedox conditions across the Cambrian–Ordovician boundary: Elemental and isotopic signatures retained in the GSSP carbonatesen
dc.typeArticleen
dcterms.bibliographicCitationAzmy K., Kendall B., Brand U., Stouge S., Gordon G.W., 2015. Redox conditions across the Cambrian-Ordovician boundary: elemental and isotopic signatures retained in the GSSP carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 440-454.en
uws.contributor.affiliation1Faculty of Scienceen
uws.contributor.affiliation2Earth and Environmental Sciencesen
uws.typeOfResourceTexten
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages