Phenomenological Modeling of Sheet Moulding Compound Composites Under Quasi-Static Three-Point Bending
Loading...
Date
Authors
Tham, Jonathan Chun-Yiu
Advisor
Inal, Kaan
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
A phenomenological model is implemented to model the behaviour of a glass fiber reinforced sheet moulding composite material. Previous characterization of SMC composites, which included the tensile, compressive, in-plane shear and three-point flexure test, found that the material exhibits tension-compression asymmetry and in-plane anisotropy. Based on the experimental results, a model, which incorporates an anisotropic and asymmetric yield function, is implemented in LS-DYNA as a user-defined material model. The model is calibrated to the experimental tension, compression and in-plane shear test results and is validated using the experimental three-point flexure test results. The model is able to capture the flexure stress-strain response within 8% of experimental results. Parametric studies are conducted to determine the sensitivity of the flexure test simulation results to various modeling and material parameters.