Show simple item record

dc.contributor.authorPanchal, Satyam
dc.contributor.authorDincer, Ibrahim
dc.contributor.authorAgelin-Chaab, Martin
dc.contributor.authorFraser, Roydon
dc.contributor.authorFowler, Michael 14:30:44 (GMT) 14:30:44 (GMT)
dc.descriptionThe final publication is available at Elsevier via © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
dc.description.abstractUnderstanding the rate of heat generation in a lithium-ion cell is critical for its safety and performance behavior. This paper presents in situ measurements of the heat generation rate for a prismatic Lithium-ion battery at 1C, 2C, 3C and 4C discharge rates and 5°C, 15°C, 25°C, and 35°C boundary conditions (BCs). For this work, an aluminum-laminated battery consisting of LiFePO4 cathode material with 20Ah capacity was adopted to investigate the variation of the rate of heat generation as a function of the discharge capacity. Ten thermocouples and three heat flux sensors were applied to the battery surface at distributed locations. The results of this study show that the highest rate of heat generation was found to be 91W for 4C discharge rate and 5°C BC while the minimum value was 13W measured at 1C discharge rate and 35°C BC. It was also found that the increase in discharge rate and thus the discharge current caused consistent increase in the heat generation rate for equal depth of discharge points. A model is later developed using the neural network approach and validated. The heat generation rate predicted by the model demonstrates an identical behavior with experimental results.en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.subjectHeat transferen
dc.subjectThermal managementen
dc.subjectLithium-ion batteryen
dc.subjectHeat generation rateen
dc.titleExperimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 batteryen
dcterms.bibliographicCitationPanchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2016). Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. International Journal of Heat and Mass Transfer, 101, 1093–1102.
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Mechanical and Mechatronics Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages