UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Design and simulation of a lithium-ion battery at large C-rates and varying boundary conditions through heat flux distributions

Loading...
Thumbnail Image

Date

2018-02-01

Authors

Panchal, Satyam
Dincer, Ibrahim
Agelin-Chaab, Martin
Fraser, Roydon
Fowler, Michael

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

In this paper, the heat flux distributions on a prismatic lithium-ion battery at 1C, 2C, 3C and 4C discharge rates under various operating temperatures and boundary conditions (BCs) of 22 °C for air cooling and 5 °C, 15 °C, and 25 °C for water cooling are presented. The goal is to provide significant quantitative data on the thermal behaviour of lithium-ion batteries. In this regard, a battery thermal management system with water cooling is designed and developed for a 20 Ah capacity pouch type lithium-ion battery using dual cold plates. Three heat flux sensors are placed at different locations on the principle surface of the battery: the first near the anode, the second near the cathode, and the third at the mid surface of the body. From these the average and peak heat flux values are obtained and presented in this study. In addition to this, the heat flux and voltage distributions are simulated using the neural network approach with the above mentioned discharge rates and BCs. The present results show that increased discharge rates and decreased operating temperature result in increased heat fluxes at the three locations as experimentally measured. Furthermore, the sensors nearest the electrodes (anode and cathode) measured the heat fluxes (and hence temperatures) higher than the sensors located at the center of the battery surface.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.measurement.2017.11.038 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Simulation, Temperature distribution, Thermal management, Heat flux, Lithium-ion battery, Measurements

LC Keywords

Citation