UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery

Loading...
Thumbnail Image

Date

2017-06-01

Authors

Panchal, Satyam
Dincer, Ibrahim
Agelin-Chaab, Martin
Fraser, Roydon
Fowler, Michael

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Both measurement and modeling of thermal performance in lithium-ion battery cell are considered crucial as they directly affect the safety. Even though the operation of a lithium-ion battery cell is transient phenomena in most cases, most available thermal models for lithium-ion battery cell predicts only steady-state temperature fields. This paper presents a mathematical model to predict the transient temperature distributions of a large sized 20Ah-LiFePO4 prismatic battery at different C-rates. In this regard, the lithium-ion battery is placed in a vertical position on a stand inside the lab with an ambient air cooling and the battery is discharged under constant current rate of 1C, 2C, 3C, and 4C in order to provide quantitative data regarding thermal behavior of lithium-ion batteries. Additionally, IR images are taken for the same battery cell during discharging. The present model predictions are in very good agreement with the experimental data and also with an IR imaging for temperature profiles. The present results show that the increased C-rates result in increased temperatures on the principle surface of the battery. (C) 2017 Elsevier Ltd. All rights reserved.

Description

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.005 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Heat transfer, Thermal analysis, Lithium-ion battery, Electrochemical model, Temperature distribution

LC Keywords

Citation