UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Cohesive zone modeling of fatigue crack growth in brazed joints

Loading...
Thumbnail Image

Date

2014-04-01

Authors

Ghovanlou, Morvarid K.
Jahed, Hamid
Khajepour, Amir

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Fatigue crack growth in low carbon steel brazed joints with copper filler metal is modeled by an irreversible Cohesive Zone Model. Strain-controlled fatigue tests are performed on the brazed specimens, and the corresponding fatigue crack initiation and propagation lives are recorded. A cyclic damage evolution law is coupled to a bilinear Cohesive Zone Model to irreversibly account for the joint stiffness degradation over the number of cycles. The damage law parameters are calibrated based on Irwin's analytical solution and the experimental fatigue crack growth data. Using the characterized irreversible Cohesive Zone Model, the fatigue crack growth is simulated and the corresponding fatigue crack growth rates are obtained. The agreement between the numerical results and the experimental data shows the applicability of the Cohesive Zone Model to fatigue crack growth analysis and life estimation of brazed joints.

Description

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.engfracmech.2014.03.014 © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Fatigue crack growth, Cohesive zone modeling, Brazed joint, Damage evolution law, Parameter calibration

LC Keywords

Citation