UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Corner-based estimation of tire forces and vehicle velocities robust to road conditions

Loading...
Thumbnail Image

Date

2017-04

Authors

Hashemi, Ehsan
Pirani, Mohammad
Khajepour, Amir
Kasaiezadeh Mahabadi, Seyed Alireza
Chen, Shih-Ken
Litkouhi, Baktiar

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Recent developments in vehicle stability control and active safety systems have led to an interest in reliable vehicle state estimation on various road conditions. This paper presents a novel method for tire force and velocity estimation at each corner to monitor tire capacities individually. This is entailed for more demanding advanced vehicle stability systems and especially in full autonomous driving in harsh maneuvers. By integrating the lumped LuGre tire model and the vehicle kinematics, it is shown that the proposed corner-based estimator does not require knowledge of the road friction and is robust to model uncertainties. The stability of the time-varying longitudinal and lateral velocity estimators is explored. The proposed method is experimentally validated in several maneuvers on different road surface frictions. The experimental results confirm the accuracy and robustness of the state estimators.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.conengprac.2017.01.009 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Vehicle state estimation, Velocity estimation, Tire force estimation, Robust observer design

LC Keywords

Citation