Prime analogues of the Erdős–Kac theorem for elliptic curves

dc.contributor.authorLiu, Yu-Ru
dc.date.accessioned2023-10-03T14:53:32Z
dc.date.available2023-10-03T14:53:32Z
dc.date.issued2006-08
dc.descriptionThis article is made available through Elsevier's open archive. This article is available here: https://doi.org/10.1016/j.jnt.2005.10.014 © 2006 Elsevier Inc. All rights reserved.en
dc.description.abstractLet E/Q be an elliptic curve. For a prime p of good reduction, let E(Fp) be the set of rational points defined over the finite field Fp. We denote by ω(#E(Fp)), the number of distinct prime divisors of #E(Fp). We prove that the quantity (assuming the GRH if E is non-CM) ω(#E(Fp)) − log logp √log logp distributes normally. This result can be viewed as a “prime analogue” of the Erdos–Kac theorem. We also study the normal distribution of the number of distinct prime factors of the exponent of E(Fp).en
dc.description.sponsorshipResearch partially supported by an NSERC Discovery Grant.en
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2005.10.014
dc.identifier.urihttp://hdl.handle.net/10012/19985
dc.language.isoenen
dc.publisherElseiveren
dc.relation.ispartofseriesJournal of Number Theory;119(2)
dc.subjectprime divisorsen
dc.subjectrational pointsen
dc.subjectelliptic curvesen
dc.titlePrime analogues of the Erdős–Kac theorem for elliptic curvesen
dc.typeArticleen
dcterms.bibliographicCitationLiu, Y.-R. (2006). Prime analogues of the erdős–kac theorem for elliptic curves. Journal of Number Theory, 119(2), 155–170. https://doi.org/10.1016/j.jnt.2005.10.014en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
24-published.pdf
Size:
146.23 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: