The Libraries will be performing routine maintenance on UWSpace on October 13th, 2025, from 8 - 9 am ET. UWSpace will be unavailable during this time. Service should resume by 9 am ET.
 

Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues

No Thumbnail Available

Date

2022-02-10

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

With the growing consumption of caffeine-containing beverages, detection of caffeine has become an important biomedical, bioanalytical, and environmental topic. We herein isolated four high-quality aptamers for caffeine with dissociation constants ranging from 2.2 to 14.6 μM as characterized using isothermal titration calorimetry. Different binding patterns were obtained for the three single demethylated analogues: theobromine, theophylline, and paraxanthine, highlighting the effect of the molecular symmetry of the arrangement of the three methyl groups in caffeine. A structure-switching fluorescent sensor was designed showing a detection limit of 1.2 μM caffeine, which reflected the labeled caffeine concentration within 6.1% difference for eight commercial beverages. In 20% human serum, a detection limit of 4.0 μM caffeine was achieved. With the four aptamer sensors forming an array, caffeine and the three analogues were well separated from nine other closely related molecules.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see https://doi.org/10.1021/acs.analchem.1c04349

Keywords

LC Subject Headings

Citation