Neural Architecture Search for Website Fingerprinting

dc.contributor.authorArun Naik, Shreya
dc.date.accessioned2024-08-07T20:45:16Z
dc.date.available2024-08-07T20:45:16Z
dc.date.issued2024-08-07
dc.date.submitted2024-07-31
dc.description.abstractTo protect their online privacy, users often employ encrypted tunnels from networks like Tor, which create multi-hop pathways to conceal communications. Tor’s design, while effective, preserves packet timing and volume, making it vulnerable to website fingerprinting (WF) attacks. In these attacks, eavesdroppers use machine learning to match traffic patterns to specific websites. Recent WF research has shifted from traditional machine learning to deep neural networks (DNNs) for more precise attacks. This shift has led to a reliance on trial-and-error adaptations from other domains, potentially overlooking innovative architectural choices. To address this challenge, this thesis introduces FAWNS, a NAS framework for website fingerprinting and traffic analysis, integrated with Microsoft’s NNI AutoML toolkit. FAWNS automates DNN design using a predefined search space. Consequently, our evaluation shows that FAWNS-generated DNNs achieve accuracy comparable to state-of-the-art attacks on undefended Tor traffic and significantly higher accuracy on defended traffic, with a 26% increase on FRONT-protected traces and a 12% increase on WTF-PAD protected traces. These models also generalize well to unseen data, highlighting NAS's potential to enhance WF effectiveness.
dc.identifier.urihttps://hdl.handle.net/10012/20757
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecttraffic analysis
dc.subjectwebsite fingerprinting
dc.subjectneural architecture search
dc.subjectinformation privacy
dc.titleNeural Architecture Search for Website Fingerprinting
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentDavid R. Cheriton School of Computer Science
uws-etd.degree.disciplineComputer Science
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorBarradas, Diogo
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ArunNaik_Shreya.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: