UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Residual-Based Isotropic and Anisotropic Mesh Adaptation for Computational Fluid Dynamics

dc.contributor.authorBaserinia, Amir Reza
dc.date.accessioned2008-05-21T20:17:11Z
dc.date.available2008-05-21T20:17:11Z
dc.date.issued2008-05-21T20:17:11Z
dc.date.submitted2008
dc.description.abstractThe accuracy of a fluid flow simulation depends not only on the numerical method used for discretizing the governing equations, but also on the distribution and topology of the mesh elements. Mesh adaptation is a technique for automatically modifying the mesh in order to improve the simulation accuracy in an attempt to reduce the manual work required for mesh generation. The conventional approach to mesh adaptation is based on a feature-based criterion that identifies the distinctive features in the flow field such as shock waves and boundary layers. Although this approach has proved to be simple and effective in many CFD applications, its implementation may require a lot of trial and error for determining the appropriate criterion in certain applications. An alternative approach to mesh adaptation is the residual-based approach in which the discretization error of the fluid flow quantities across the mesh faces is used to construct an adaptation criterion. Although this approach provides a general framework for developing robust mesh adaptation criteria, its incorporation leads to significant computational overhead. The main objective of the thesis is to present a methodology for developing an appropriate mesh adaptation criterion for fluid flow problems that offers the simplicity of a feature-based criterion and the robustness of a residual-based criterion. This methodology is demonstrated in the context of a second-order accurate cell-centred finite volume method for simulating laminar steady incompressible flows of constant property fluids. In this methodology, the error of mass and momentum flows across the faces of each control volume are estimated with a Taylor series analysis. Then these face flow errors are used to construct the desired adaptation criteria for triangular isotropic meshes and quadrilateral anisotropic meshes. The adaptation results for the lid-driven cavity flow show that the solution error on the resulting adapted meshes is 80 to 90 percent lower than that of a uniform mesh with the same number of control volumes. The advantage of the proposed mesh adaptation method is the capability to produce meshes that lead to more accurate solutions compared to those of the conventional methods with approximately the same amount of computational effort.en
dc.identifier.urihttp://hdl.handle.net/10012/3719
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectComputational Fluid Dynamicsen
dc.subjectMesh Adaptationen
dc.subjectError Indicatoren
dc.subject.programMechanical Engineeringen
dc.titleResidual-Based Isotropic and Anisotropic Mesh Adaptation for Computational Fluid Dynamicsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
9.84 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
252 B
Format:
Item-specific license agreed upon to submission
Description: