Towards Domain Invariant Real-time Point Cloud Perception

dc.contributor.authorCui, Yaodong
dc.date.accessioned2023-05-25T14:55:06Z
dc.date.available2024-05-25T04:50:05Z
dc.date.issued2023-05-25
dc.date.submitted2023-05-19
dc.description.abstractIn recent years, autonomous driving has witnessed substantial advancements, owing in part to the rapid advancement of 3D sensor technologies, particularly Light Detection and Ranging (LiDAR) sensors.Despite these advancements, the challenge of open-world autonomous driving remains a pressing issue that requires resolution. This encompasses the need for dependable and resilient 3D perception across a multitude of environments. Particularly, point cloud is irregular, unordered, and continuous with large data size, which presents unique challenges for its real-time processing. Another major challenge came from the perception system’s inability to adapt to different environments, known as the domain adaptation problem. This is due in part to a lack of diverse and representative datasets, and in part to existing models’ insufficient generalization ability. To tackle this challenge, this dissertation conducts a thorough investigation into the domain adaptation challenges associated with real-time point cloud perception. This dissertation addresses these challenges associated with the deployment and train- ing of point cloud perception systems in a self-contained manner.To ensure sufficient real- time capability during deployment, a novel approach called task-attentive 3D perception is proposed. It incorporates HD-map, vehicle states, and emergency breaking distance to dynamically remove task un-related point cloud for driving safety and computation effi- ciency. Furthermore, this thesis looks at the problem of driving in varied domains from both the data and the model standpoint. First, a novel method for creating the target real- world domains in the simulator using real-world prior is presented. Using this method, a noval large-scale multi-task dataset called Domains-3D is developed, which comprises both real-world and synthetic domains. Finally, using this dataset, a novel Plug-and-Play (PnP) domain adaptation algorithm for 3D point clouds that minimizes domain shifts is presented. This algorithm improves a model’s performance for both cross-scene domain adaptation and intra-domain 3D object detection.en
dc.identifier.urihttp://hdl.handle.net/10012/19482
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectautonomous drivingen
dc.subjectdeep learningen
dc.subjectcomputer visionen
dc.subjectpoint clouden
dc.titleTowards Domain Invariant Real-time Point Cloud Perceptionen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorKhajepour, Amir
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cui_Yaodong.pdf
Size:
55.28 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: