The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Long Range Polymer Chain Dynamics Studied by Fluorescence Quenching

Loading...
Thumbnail Image

Authors

Farhangi, Shiva
Duhamel, Jean

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Over the years, fluorescence quenching experiments have provided a robust analytical means to retrieve information about the internal dynamics of macromolecules in general and the long range polymer chain dynamics (LRPCD) of linear chains in particular. This report reviews the results obtained to. date with the two main fluorescence experiments based on collisional quenching that have been used over the years to describe LRPCD. These experiments involve the labeling of a chain with dyes and quenchers either at the ends of a monodisperse chain for fluorescence quenching end-to-end cyclization (fqEEC) experiments or randomly along a polydisperse chain for fluorescence decay analysis with the fluorescence blob model (FBM). The advantages and disadvantages of these two types Of experiments are discussed as well as their range of applications and applicability to the field of protein folding. In particular, this Perspective illustrates how fqEEc experiments are being applied to probe loop formation in polypeptides and how FBM analysis of randomly labeled polypeptides could help determine the size of foldons which are expected to solve Levinthal's long-standing paradox.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.macromol.6b01295

LC Subject Headings

Citation