The use of random forests to classify amyloid brain PET

dc.contributor.authorZukotynski, Katherine
dc.contributor.authorGaudet, Vincent C.
dc.contributor.authorKuo, Phillip H.
dc.contributor.authorAdamo, Sabrina
dc.contributor.authorGoubran, Maged
dc.contributor.authorScott, Christopher
dc.contributor.authorBocti, Christian
dc.contributor.authorBorrie, Michael
dc.contributor.authorChertkow, Howard
dc.contributor.authorFrayne, Richard
dc.contributor.authorHsiung, Robin
dc.contributor.authorLaforce, Robert
dc.contributor.authorNoseworthy, Michael D.
dc.contributor.authorPrato, Frank S.
dc.contributor.authorSahlas, Demetrios J.
dc.contributor.authorSmith, Eric E.
dc.contributor.authorSossi, Vesna
dc.contributor.authorThiel, Alexander
dc.contributor.authorSoucy, Jean-Paul
dc.contributor.authorTardif, Jean-Claude
dc.contributor.authorBlack, Sandra E.
dc.date.accessioned2023-11-03T17:38:19Z
dc.date.available2023-11-03T17:38:19Z
dc.date.issued2019-10
dc.descriptionCopyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.en
dc.description.abstractPurpose: To evaluate random forests (RFs) as a supervised machine learning algorithm to classify amyloid brain PET as positive or negative for amyloid deposition and identify key regions of interest for stratification. Methods: The data set included 57 baseline 18F-florbetapir (Amyvid; Lilly, Indianapolis, IN) brain PET scans in participants with severe white matter disease, presenting with either transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, enrolled in a multicenter prospective observational trial. Scans were processed using the MINC toolkit to generate SUV ratios, normalized to cerebellar gray matter, and clinically read by 2 nuclear medicine physicians with interpretation based on consensus (35 negative, 22 positive). SUV ratio data and clinical reads were used for super- vised training of an RF classifier programmed in MATLAB. Results: A 10,000-tree RF, each tree using 15 randomly selected cases and 20 randomly selected features (SUV ratio per region of interest), with 37 cases for training and 20 cases for testing, had sensitivity = 86% (95% confidence in- terval [CI], 42%–100%), specificity = 92% (CI, 64%–100%), and classification accuracy = 90% (CI, 68%–99%). The most common features at the root node (key regions for stratification) were (1) left posterior cingulate (1039 trees), (2) left middle frontal gyrus (1038 trees), (3) left precuneus (857 trees), (4) right an- terior cingulate gyrus (655 trees), and (5) right posterior cingulate (588 trees). Conclusions: Random forests can classify brain PET as positive or negative for amyloid deposition and suggest key clinically relevant, regional features for classification.en
dc.description.sponsorshipCIHR MITNEC C6 || Linda C Campbell Foundation || Lilly-Avid Radiopharmaceuticals.en
dc.identifier.urihttps://doi.org/10.1097/rlu.0000000000002747
dc.identifier.urihttp://hdl.handle.net/10012/20083
dc.language.isoenen
dc.publisherWolters Kluwer Healthen
dc.relation.ispartofseriesClinical Muclear Medicine;44(10)
dc.subjectamyloiden
dc.subjectbrain PETen
dc.subjectdementiaen
dc.subjectmachine learningen
dc.subjectrandom foresten
dc.titleThe use of random forests to classify amyloid brain PETen
dc.typeArticleen
dcterms.bibliographicCitationZukotynski, K., Gaudet, V., Kuo, P. H., Adamo, S., Goubran, M., Scott, C., Bocti, C., Borrie, M., Chertkow, H., Frayne, R., Hsiung, R., Laforce, R., Noseworthy, M. D., Prato, F. S., Sahlas, D. J., Smith, E. E., Sossi, V., Thiel, A., Soucy, J.-P., Tardif, J.C. & Black, S. E. (2019). The use of random forests to classify amyloid brain pet. Clinical Nuclear Medicine, 44(10), 784–788. https://doi.org/10.1097/rlu.0000000000002747en
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Electrical and Computer Engineeringen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MANUSCRIPT.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: