UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Abstract and Explicit Constructions of Jacobian Varieties

dc.contributor.authorUrbanik, David
dc.date.accessioned2018-08-10T14:13:40Z
dc.date.available2018-08-10T14:13:40Z
dc.date.issued2018-08-10
dc.date.submitted2018
dc.description.abstractAbelian varieties, in particular Jacobian varieties, have long attracted interest in mathematics. Their influence pervades arithmetic geometry and number theory, and understanding their construction was a primary motivator for Weil in his work on developing new foundations for algebraic geometry in the 1930s and 1940s. Today, these exotic mathematical objects find applications in cryptography and computer science, where they can be used to secure confidential communications and factor integers in subexponential time. Although in many respects well-studied, working in concrete, explicit ways with abelian varieties continues to be difficult. The issue is that, aside from the case of elliptic curves, it is often difficult to find ways of modelling and understanding these objects in ways amenable to computation. Often, the approach taken is to work ``indirectly'' with abelian varieties, in particular with Jacobians, by working instead with divisors on their associated curves to simplify computations. However, properly understanding the mathematics underlying the direct approach --- why, for instance, one can view the degree zero divisor classes on a curve as being points of a variety --- requires sophisticated mathematics beyond what is usually understood by algorithms designers and even experts in computational number theory. A direct approach, where explicit polynomial and rational functions are given that define both the abelian variety and its group law, cannot be found in the literature for dimensions greater than two. In this thesis, we make two principal contributions. In the first, we survey the mathematics necessary to understand the construction of the Jacobian of a smooth algebraic curve as a group variety. In the second, we present original work with gives the first instance of explicit rational functions defining the group law of an abelian variety of dimension greater than two. In particular, we derive explicit formulas for the group addition on the Jacobians of hyperelliptic curves of every genus g, and so give examples of explicit rational formulas for the group law in every positive dimension.en
dc.identifier.urihttp://hdl.handle.net/10012/13569
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectalgebraic geometryen
dc.subjectjacobian varietiesen
dc.subjectabelian varietiesen
dc.subjectgroup lawen
dc.titleAbstract and Explicit Constructions of Jacobian Varietiesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorSatriano, Matthew
uws.contributor.advisorJao, David
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Urbanik_David.pdf
Size:
762.4 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: