UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Mechanical Degradation of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cells

dc.contributor.authorShen, Yinqi
dc.date.accessioned2017-06-08T19:14:42Z
dc.date.available2017-06-08T19:14:42Z
dc.date.issued2017-06-08
dc.date.submitted2017
dc.description.abstractThe Polymer Electrolyte Membrane (PEM) fuel cell is an ideal emerging alternative power source for transportation; however, before PEM fuel cells’ widespread use, a number of technical challenges need to be overcome, including durability which is mainly associated with three factors: mechanical, electrochemical, and thermal degradation. Among them, mechanical degradation is of paramount importance because it causes a gradual reduction of mechanical strength, toughness and, ultimately, cell performance decay. Yet, studies focusing on the mechanical degradation of MEAs and its impact on cell performance decay are relatively scarce. This thesis focuses on the early and late stages of mechanical degradation of an MEA in a PEM fuel cell. In the experimental phase, scanning electron microscope (SEM) tests detailed the initial microstructures and their changes in an MEA before and after accelerated durability testing. The possibility that large stresses, including clamping forces and hygro-thermal stresses, were the reason behind these structural changes, necessitated further studies of stress conditions in the MEA using a structure model. Techniques used to characterize the mechanical properties of gas diffusion layers (GDLs) and of catalyst layers included a microcompression tester and the nanoindentation technique. These mechanical properties guided the selection of constitutive relations in the modelling. In the modelling phase, a structure model clarified the stress and deformation of MEAs during common and cyclic operating conditions. A variety of constitutive models enabled the simulation of different materials in cells. A deformed MEA determined from the structure model enabled a more realistic method to study the cell performance under early and late stages of mechanical degradation. Results revealed that MEA’s early mechanical degradation, which is related with operating conditions, assembly methods and channel designs, had a complex effect on transport phenomenon. In addition, since an MEA’s early degradation is associated with durability, the selection of operating conditions, assembly methods and channel designs should balance both cell performance and durability. Under 2000 cyclic changes in operating conditions, the cell performance decreases about 8% merely with the mechanical degradation. Therefore, in order to increase the life span of a PEM fuel cell, it is important to find an effective approach to relief the mechanical degradation.en
dc.identifier.urihttp://hdl.handle.net/10012/11990
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectPEM Fuel Cellen
dc.subjectMechanical Degradationen
dc.subjectMEAen
dc.titleMechanical Degradation of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cellsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.comment.hiddenThank you for your help. No commentsen
uws.contributor.advisorLi, Xianguo
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shen_Yinqi.pdf
Size:
7.63 MB
Format:
Adobe Portable Document Format
Description:
This is my electronic thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: