Design of a Novel Rear Cradle for Electrified Powertrains

dc.contributor.authorEr, Timothy
dc.date.accessioned2021-09-22T18:50:19Z
dc.date.available2021-09-22T18:50:19Z
dc.date.issued2021-09-22
dc.date.submitted2021-09-16
dc.description.abstractWith the ever-increasing, stringent requirements of fuel economy, automotive manufacturers have cited reduction of vehicle weight as one of the most effective methods of decreasing fuel consumption and emissions. Due to the abundance of traditional combustion-engine vehicles on the road, it is not uncommon for independent research groups or shops to convert these vehicles to hybrid, or full electric. In doing so, major changes to key structural aspects of the vehicle are required. However, it is far too often found that changes are made without proper analysis and design of the component. As such, this thesis provides an outline on the processes and methods used to develop a prototype structural component; in this case a custom rear cradle was used as an example, which was redesigned to house an electric motor drive unit in an existing production vehicle. Firstly, requirements such as structural strength, stiffness, and manufacturability were devised. In considering all these requirements, 6061-T6 aluminum was set as the new material for this component, given its high specific strength and stiffness, as well as ease of manufacturability and cost. Fatigue analysis was conducted to develop new structural requirements for this component, given its differing material properties from the previous design being made from steel. Next, topology optimization was conducted to gain an idea of an optimized, lightweight structure that met requirements. Structural analysis utilizing beam theory allowed for rapid iteration of tube diameters and wall thicknesses, this was translated to analysis of full geometry once requirements were met. All in all, the final design yielded a lighter component, while maintaining structural integrity. The new cradle design represents a weight savings of 57% over the 2019 cradle, while satisfying all the requirements set. It is expected that further weight reduction is possible, given future development in fatigue analysis and certain design aspects of the cradle. As such, the processes and methods outlined in this thesis can be applied to other structural components of similar nature for prototype vehicles.  en
dc.identifier.urihttp://hdl.handle.net/10012/17477
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectChevrolet Blazeren
dc.subjectEcoCARen
dc.subjectecocaren
dc.subjectUWAFTen
dc.subjectGeneral Motorsen
dc.subjectFEAen
dc.subjectcradleen
dc.subjectsubframeen
dc.subjectsuspensionen
dc.subjectmechanicalen
dc.subjectdesignen
dc.subjectanalysisen
dc.subjectstructuralen
dc.subjectFEAen
dc.subjectCADen
dc.titleDesign of a Novel Rear Cradle for Electrified Powertrainsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorFraser, Roydon
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Er_Timothy.pdf
Size:
8.96 MB
Format:
Adobe Portable Document Format
Description:
Thesis Document
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: