Hilbert space operators with compatible off-diagonal corners

dc.contributor.authorLivshits, Leo
dc.contributor.authorMacDonald, Gordon
dc.contributor.authorMarcoux, Laurent W.
dc.contributor.authorRadjavi, Heydar
dc.date.accessioned2018-07-11T19:10:20Z
dc.date.available2018-07-11T19:10:20Z
dc.date.issued2018-08-15
dc.descriptionThe final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jfa.2018.04.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractGiven a complex, separable Hilbert space H, we characterize those operators for which ‖PT(I−P)‖=‖(I−P)TP‖ for all orthogonal projections P on H. When H is finite-dimensional, we also obtain a complete characterization of those operators for which rank(I−P)TP=rankPT(I−P) for all orthogonal projections P. When H is infinite-dimensional, we show that any operator with the latter property is normal, and its spectrum is contained in either a line or a circle in the complex plane.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen
dc.identifier.urihttps://dx.doi.org/10.1016/j.jfa.2018.04.002
dc.identifier.urihttp://hdl.handle.net/10012/13469
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCornersen
dc.subjectNormal operatorsen
dc.subjectReductive operatorsen
dc.subjectUnitary operatorsen
dc.titleHilbert space operators with compatible off-diagonal cornersen
dc.typeArticleen
dcterms.bibliographicCitationLivshits, L., MacDonald, G., Marcoux, L. W., & Radjavi, H. (2018). Hilbert space operators with compatible off-diagonal corners. Journal of Functional Analysis, 275(4), 892–925. doi:10.1016/j.jfa.2018.04.002en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Applied Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022123618301411-main.pdf
Size:
452.89 KB
Format:
Adobe Portable Document Format
Description:
Post-print

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.46 KB
Format:
Plain Text
Description: