Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides

Loading...
Thumbnail Image

Date

2011-03-15

Authors

Wu, Marissa
Kempaiah, Ravindra
Huang, Po-Jung Jimmy
Maheshwari, Vivek
Liu, Juewen

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Being the newest member of the carbon materials family, graphene possesses many unique physical properties resulting is a wide range of applications. Recently, it was discovered that graphene oxide can effectively adsorb DNA, and at the same time, it can completely quench adsorbed fluorophores. These properties make it possible to prepare DNA-based optical sensors using graphene oxide. While practical analytical applications are being demonstrated, the fundamental understanding of binding between graphene oxide and DNA in solution received relatively less attention. In this work, we report that the adsorption of 12-, 18-, 24-, and 36-mer single-stranded DNA on graphene oxide is affected by several factors. For example, shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of graphene. The adsorption is favored by a lower pH and a higher ionic strength. The presence of organic solvents such as ethanol can either increase or decrease adsorption depending on the ionic strength of the solution. By adding the cDNA, close to 100% desorption of the absorbed DNA on graphene can be achieved. On the other hand, if temperature is increased, only a small percentage of DNA is desorbed. Further, the adsorbed DNA can also be exchanged by free DNA in solution. These findings are important for further understanding of the interactions between DNA and graphene and for the optimization of DNA and graphene-based devices and sensors.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/la1037926

Keywords

DNA, Graphene oxide, Adsorption, Desorption

LC Subject Headings

Citation