Homogeneous sets in graphs and a chromatic multisymmetric function

dc.contributor.authorCrew, Logan
dc.contributor.authorHaithcock, Evan
dc.contributor.authorReynes, Josephine
dc.contributor.authorSpirkl, Sophie
dc.date.accessioned2024-05-24T14:59:32Z
dc.date.available2024-05-24T14:59:32Z
dc.date.issued2024-07
dc.descriptionThis is an open access article under the CC BY license (http://creativecommons.org /licenses/by /4.0/).en
dc.description.abstractIn this paper, we extend the chromatic symmetric function X to a chromatic k-multisymmetric function Xk, defined for graphs equipped with a partition of their vertex set into k parts. We demonstrate that this new function retains the basic properties and basis expansions of X, and we give a method for systematically deriving new linear relationships for X from previous ones by passing them through Xk. In particular, we show how to take advantage of homogeneous sets of G(those S⊆V(G)such that each vertex of V(G)\S is either adjacent to all of S or is nonadjacent to all of S) to relate the chromatic symmetric function of G to those of simpler graphs. Furthermore, we show how extending this idea to homogeneous pairs S1 S2 ⊆ V(G) generalizes the process used by Guay-Paquet to reduce the Stanley-Stembridge conjecture to unit interval graphs.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2020-03912 || NSERC, RGPIN-2022-03093.en
dc.identifier.urihttps://doi.org/10.1016/j.aam.2024.102718
dc.identifier.urihttp://hdl.handle.net/10012/20593
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesAdvances in Applied Mathematics;102718
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectchromatic symmetric functionen
dc.subjectmultisymmetric functionen
dc.subjectsymmetric functionen
dc.subjectdeletion-contractionen
dc.subjectstructural graph theoryen
dc.subjectStanley-Stembridge conjectureen
dc.titleHomogeneous sets in graphs and a chromatic multisymmetric functionen
dc.typeArticleen
dcterms.bibliographicCitationCrew, L., Haithcock, E., Reynes, J., & Spirkl, S. (2024). Homogeneous sets in graphs and a chromatic multisymmetric function. Advances in Applied Mathematics, 158, 102718. https://doi.org/10.1016/j.aam.2024.102718en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Combinatorics and Optimizationen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0196885824000502-main.pdf
Size:
570.46 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: