The Erdős Theorem and the Halberstam Theorem in function fields

dc.contributor.authorLiu, Yu-Ru
dc.date.accessioned2023-10-03T14:57:50Z
dc.date.available2023-10-03T14:57:50Z
dc.date.issued2004
dc.descriptionThis is the Accepted Version of the paper published in the journal Acta Arithmetica in 2004. The final Version of Record is available here https://doi.org/10.4064/aa114-4-3en
dc.description.abstractIntroduction. For n ∈ N, define ω(n) to be the number of distinct prime divisors of n. The Tur´an Theorem [9] concerns the second moment of ω(n) and it implies a result of Hardy and Ramanujan [4] that the normal order of ω(n) is log log n. Further development of probabilistic ideas led Erd˝os and Kac [2] to prove a remarkable refinement of the Hardy Ramanujan Theorem, namely, the existence of a normal distribution for ω(n).en
dc.description.sponsorshipResearch partially supported by an NSERC discovery grant.en
dc.identifier.urihttps://doi.org/10.4064/aa114-4-3
dc.identifier.urihttp://hdl.handle.net/10012/19992
dc.language.isoenen
dc.publisherInstitute of Mathematics of the Polish Academy of Sciencesen
dc.relation.ispartofseriesActa Arithmetica;114(4)
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThe Erdős Theorem and the Halberstam Theorem in function fieldsen
dc.typeArticleen
dcterms.bibliographicCitationLiu, Y.-R. (2004). The Erdős theorem and the Halberstam theorem in Function Fields. Acta Arithmetica, 114(4), 323–330. https://doi.org/10.4064/aa114-4-3en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2004-erdos-halberstam.pdf
Size:
224.31 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: