Development of a Semi-active Intelligent Suspension System for Heavy Vehicles
dc.contributor.author | Nima, Eslaminasab | |
dc.date.accessioned | 2008-05-13T14:58:35Z | |
dc.date.available | 2008-05-13T14:58:35Z | |
dc.date.issued | 2008-05-13T14:58:35Z | |
dc.date.submitted | 2008 | |
dc.description.abstract | With the new advancements in the vibration control strategies and controllable actuator manufacturing, the semi-active actuators (dampers) are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technologies can be divided into two main groups. The first uses controllable electromagnetic valves. The second uses magnetorheological (MR) fluid to control the damping characteristics of the system. Leading automotive companies such as General Motors and Volvo have started to use semi-active actuators in the suspension systems of high-end automobiles, such as the Cadillac Seville and Corvette, to improve the handling and ride performance in the vehicle. But much more research and development is needed in design, fabrication, and control of semi-active suspension systems and many challenges must be overcome in this area. Particularly in the area of heavy vehicle systems, such as light armored vehicles, little related research has been done, and there exists no commercially available controllable damper suitable for the relatively high force and large displacement requirements of such application. As the first response to these requirements, this thesis describes the design and modeling of an in-house semi-active twin-tube shock absorber with an internal variable solenoid-actuated valve. A full-scale semi-active damper prototype is developed and the shock absorber is tested to produce the required forcing range. The test results are compared with results of the developed mathematical model. To gain a better understanding of the semi-active suspension controlled systems and evaluate the performance of those systems, using perturbation techniques this thesis provides a detailed nonlinear analysis of the semi-active systems and establishes the issue of nonlinearity in on-off semi-active controlled systems. Despite different semi-active control methods and the type of actuators used in a semi-active controlled system, one important practical aspect of all hydro-mechanical computer controlled systems is the response-time. The longest response-time is usually introduced by the actuator –in this case, controllable actuator – in the system. This study investigates the effect of response-time in a semi-active controlled suspension system using semi-active dampers. Numerical simulations and analytical techniques are deployed to investigate the issue. The performance of the system due to the response-time is then analyzed and discussed. Since the introduction of the semi-active control strategy, the challenge was to develop methods to effectively use the capabilities of semi-active devices. In this thesis, two semi-active control strategies are proposed. The first controller to be proposed is a new hybrid semi-active control strategy based on the conventional Rakheja-Sankar (R-S) semi-active control to provide better ride-handling quality for vehicle suspension systems as well as industrial vibration isolators. To demonstrate the effectiveness of this new strategy, the analytical method of averaging and the numerical analysis method are deployed. In addition, a one-degree-of-freedom test bed equipped with a semi-active magnetorheological (MR) damper is developed. The tests are performed using the MATLAB XPC-target to guarantee the real-time implementation of the control algorithm. The second controller is an intelligent fuzzy logic controller system to optimize the suspension performance. The results from this intelligent system are compared with those of several renowned suspension control methods such as Skyhook. It is shown that the proposed controller can enhance concurrently the vehicle handling and ride comfort, while consuming less energy than existing control methodologies. The key goal of this thesis is to employ the existing knowledge of the semi-active systems together with the new ideas to develop a semi-active suspension system. At the same time, development of an experimental simulation system for real-time control of an experimental test bed is considered. To achieve its goals and objectives, this research study combines and utilizes the numerical simulations and analytical methods, as well as lab-based experimental works. The challenge in this research study is to identify practical and industrial problems and develop proper solutions to those problems using viable scientific approaches. | en |
dc.identifier.uri | http://hdl.handle.net/10012/3658 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.subject | Vehicle suspension | en |
dc.subject | Heavy Vehicle | en |
dc.subject | Semiactive Control | en |
dc.subject | Controlabledamper | en |
dc.subject.program | Mechanical Engineering | en |
dc.title | Development of a Semi-active Intelligent Suspension System for Heavy Vehicles | en |
dc.type | Doctoral Thesis | en |
uws-etd.degree | Doctor of Philosophy | en |
uws-etd.degree.department | Mechanical and Mechatronics Engineering | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |