On Specht's Theorem in UHF C*-algebras
dc.contributor.author | Marcoux, Laurent | |
dc.contributor.author | Zhang, Yuanhang | |
dc.date.accessioned | 2024-01-31T16:29:43Z | |
dc.date.available | 2024-01-31T16:29:43Z | |
dc.date.issued | 2021-01-01 | |
dc.description | The final publication is available at Elsevier via https://doi.org/10.1016/j.jfa.2020.108778. © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.description.abstract | Specht’s Theorem states that two matrices Aand Bin Mn(C)are unitarily equivalent if and only if tr(w(A, A∗)) =tr(w(B, B∗))for all words w(x, y)in two non-commuting variables xand y. In this article we examine to what extent this trace condition characterises approximate unitary equivalence in uniformly hyperfinite (UHF) C∗-algebras. In particular, we show that given two elements a, bof the universal UHF-algebra Qwhich generate C∗-algebras satisfying the UCT, they are approximately unitarily equi-valent if and only if τ(w(a, a∗)) =τ(w(b, b∗))for all words w(x, y)in two non-commuting variables (where τdenotes the unique tracial state on Q), while there exist two elements a, bin the UHF-algebra M2∞which fail to be approximately unitarily equivalent despite the fact that they satisfy the trace condition. We also examine a consequence of these results for ampliations of matrices. | en |
dc.description.sponsorship | L.W. Marcoux's research is supported in part by NSERC (Canada) || Y.H. Zhang's research is supported in part by National Natural Science Foundation of China (12071174, 11671167) || Science and Technology Development Project of Jilin Province, 20190103028JH. | en |
dc.identifier.uri | https://doi.org/10.1016/j.jfa.2020.108778 | |
dc.identifier.uri | http://hdl.handle.net/10012/20320 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Journal of Functional Analysis;280(1) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Specht's Theorem | en |
dc.subject | approximate unitary equivalence | en |
dc.subject | UHF-algebras | en |
dc.subject | approximate absolute value condition | en |
dc.title | On Specht's Theorem in UHF C*-algebras | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Marcoux, Laurent W., & Zhang, Y. (2021). On Specht’s theorem in UHF C*-algebras. Journal of Functional Analysis, 280(1), 108778. https://doi.org/10.1016/j.jfa.2020.108778 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2020 MarcouxLW ZhangY 2020 On Specht's theorem in UHF C-star-algebras.pdf
- Size:
- 480.12 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.47 KB
- Format:
- Item-specific license agreed upon to submission
- Description: