On *-similarity in C*-algebras
dc.contributor.author | Marcoux, Laurent | |
dc.contributor.author | Radjavi, Heydar | |
dc.contributor.author | Yahaghi, B.R. | |
dc.date.accessioned | 2024-01-31T16:30:45Z | |
dc.date.available | 2024-01-31T16:30:45Z | |
dc.date.issued | 2020 | |
dc.description | Published by the Institute of Mathematics Polish Academy of Sciences, Marcoux, L. W., Radjavi, H., & Yahaghi, B. R. (2020). On *-similarity in C*-algebras. Studia Mathematica, 252(1), 93–103. https://doi.org/10.4064/sm190102-29-4 | en |
dc.description.abstract | Two subsets X and Y of a unital C -algebra A are said to be -similar via s 2 A1 if Y = s1Xs and Y = s1X s. We show that this relation imposes a certain structure on the sets X and Y, and that under certain natural conditions (for example, if X is bounded), -similar sets must be unitarily equivalent. As a consequence of our main results, we present a generalized version of a well-known theorem of W. Specht. | en |
dc.identifier.uri | https://doi.org/10.4064/sm190102-29-4 | |
dc.identifier.uri | http://hdl.handle.net/10012/20322 | |
dc.language.iso | en | en |
dc.publisher | Instytut Matematyczny | en |
dc.relation.ispartofseries | Studia Mathematica;252(1) | |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | quasidiagonal *-similarity | en |
dc.subject | Fuglede-Putnam theorem | en |
dc.subject | Specht's theorem | en |
dc.subject | unitary equivalence | en |
dc.title | On *-similarity in C*-algebras | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Marcoux, L. W., Radjavi, H., & Yahaghi, B. R. (2020). On *-similarity in C*-algebras. Studia Mathematica, 252(1), 93–103. https://doi.org/10.4064/sm190102-29-4 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |