On the optimal CFL number of SSP methods for hyperbolic problems
| dc.contributor.author | Giuliani, Andrew | |
| dc.contributor.author | Krivodonova, Lilia | |
| dc.date.accessioned | 2018-10-22T18:59:47Z | |
| dc.date.available | 2018-10-22T18:59:47Z | |
| dc.date.issued | 2019-01-01 | |
| dc.description | The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.apnum.2018.08.015 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
| dc.description.abstract | We show that the theory for strong stability preserving (SSP) time stepping methods employed with the method of lines-type discretizations of hyperbolic conservation laws may result in overly stringent time step restrictions. We analyze a fully discrete finite volume method with slope reconstruction and a second order SSP Runge–Kutta time integrator to show that the maximum stable time step can be increased over the SSP limit. Numerical examples indicate that this result extends to two-dimensional problems on triangular meshes. | en |
| dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada ["341373-07"] | en |
| dc.description.sponsorship | Alexander Graham Bell PGS-D | en |
| dc.description.sponsorship | NVIDIA Corporation | en |
| dc.identifier.uri | https://dx.doi.org/10.1016/j.apnum.2018.08.015 | |
| dc.identifier.uri | http://hdl.handle.net/10012/14042 | |
| dc.language.iso | en | en |
| dc.publisher | Elsevier | en |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | CFL condition | en |
| dc.subject | Hyperbolic conservation laws | en |
| dc.subject | Method of lines | en |
| dc.subject | Stability | en |
| dc.subject | Strong stability preserving methods | en |
| dc.title | On the optimal CFL number of SSP methods for hyperbolic problems | en |
| dc.type | Article | en |
| dcterms.bibliographicCitation | Giuliani, A., & Krivodonova, L. (2019). On the optimal CFL number of SSP methods for hyperbolic problems. Applied Numerical Mathematics, 135, 165–172. doi:10.1016/j.apnum.2018.08.015 | en |
| uws.contributor.affiliation1 | Faculty of Mathematics | en |
| uws.contributor.affiliation2 | Applied Mathematics | en |
| uws.peerReviewStatus | Reviewed | en |
| uws.scholarLevel | Faculty | en |
| uws.scholarLevel | Graduate | en |
| uws.typeOfResource | Text | en |
| uws.typeOfResource | Text | en |