On the optimal CFL number of SSP methods for hyperbolic problems

dc.contributor.authorGiuliani, Andrew
dc.contributor.authorKrivodonova, Lilia
dc.date.accessioned2018-10-22T18:59:47Z
dc.date.available2018-10-22T18:59:47Z
dc.date.issued2019-01-01
dc.descriptionThe final publication is available at Elsevier via https://dx.doi.org/10.1016/j.apnum.2018.08.015 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractWe show that the theory for strong stability preserving (SSP) time stepping methods employed with the method of lines-type discretizations of hyperbolic conservation laws may result in overly stringent time step restrictions. We analyze a fully discrete finite volume method with slope reconstruction and a second order SSP Runge–Kutta time integrator to show that the maximum stable time step can be increased over the SSP limit. Numerical examples indicate that this result extends to two-dimensional problems on triangular meshes.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada ["341373-07"]en
dc.description.sponsorshipAlexander Graham Bell PGS-Den
dc.description.sponsorshipNVIDIA Corporationen
dc.identifier.urihttps://dx.doi.org/10.1016/j.apnum.2018.08.015
dc.identifier.urihttp://hdl.handle.net/10012/14042
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCFL conditionen
dc.subjectHyperbolic conservation lawsen
dc.subjectMethod of linesen
dc.subjectStabilityen
dc.subjectStrong stability preserving methodsen
dc.titleOn the optimal CFL number of SSP methods for hyperbolic problemsen
dc.typeArticleen
dcterms.bibliographicCitationGiuliani, A., & Krivodonova, L. (2019). On the optimal CFL number of SSP methods for hyperbolic problems. Applied Numerical Mathematics, 135, 165–172. doi:10.1016/j.apnum.2018.08.015en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Applied Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0168927418301910-main.pdf
Size:
634.73 KB
Format:
Adobe Portable Document Format
Description:
Post-print

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.46 KB
Format:
Plain Text
Description: