List-k-Coloring H-Free Graphs for All k > 4

dc.contributor.authorChudnovsky, Maria
dc.contributor.authorHajebi, Sepehr
dc.contributor.authorSpirkl, Sophie
dc.date.accessioned2024-05-24T16:02:39Z
dc.date.available2024-05-24T16:02:39Z
dc.date.issued2024-05-14
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Combinatorica. The final authenticated version is available online at: https://doi.org/10.1007/s00493-024-00106-2en
dc.description.abstractGiven an integer k > 4 and a graph H, we prove that, assuming P =/ NP, the LIST-k-COLORING PROBLEM restricted to H-free graphs can be solved in polynomial time if and only if either every component of H is a path on at most three vertices, or removing the isolated vertices of H leaves an induced subgraph of the five-vertex path. In fact, the "if" implication holds for all k>_ 1.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2020-03912 || Government of Ontario || Alfred P. Sloan Fellow || NSF-EPSRC, Grant DMS-2120644 || AFOSR, Grant FA9550-22-1-0083.en
dc.identifier.urihttps://doi.org/10.1007/s00493-024-00106-2
dc.identifier.urihttp://hdl.handle.net/10012/20595
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesCombinatorica;
dc.subjectcoloringen
dc.subjectlist-coloringen
dc.subjectinduced subgraphsen
dc.subjectpolynomial-time algorithmsen
dc.titleList-k-Coloring H-Free Graphs for All k > 4en
dc.typeArticleen
dcterms.bibliographicCitationChudnovsky, M., Hajebi, S., & Spirkl, S. (2024). List-K-coloring h-free graphs for all K>4. Combinatorica. https://doi.org/10.1007/s00493-024-00106-2en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Combinatorics and Optimizationen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LkC_rP3_free_graphs.pdf
Size:
386.78 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: