On the number of irreducible factors with a given multiplicity in function fields

dc.contributor.authorDas, Sourabhashis
dc.contributor.authorElma, Ertan
dc.contributor.authorKuo, Wentang
dc.contributor.authorLiu, Yu-Ru
dc.date.accessioned2023-10-03T15:17:29Z
dc.date.available2023-10-03T15:17:29Z
dc.date.issued2023-12
dc.descriptionThe final publication is available at Elsevier via https://doi.org/10.1016/j.ffa.2023.102281. © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractLet k ≥ 1 be a natural number and f ∈ Fq[t] be a monic polynomial. Let ωk(f) denote the number of distinct monic irreducible factors of f with multiplicity k. We obtain asymptotic estimates for the first and the second moments of ωk(f) with k ≥ 1. Moreover, we prove that the function ω1(f) has normal order log(deg(f)) and also satisfies the Erdős-Kac Theorem. Finally, we prove that the functions ωk(f) with k ≥ 2 do not have normal order.en
dc.description.sponsorshipNSERC Discovery Grant, RGPIN-2020-03915 || NSERC Discovery Grant, RGPIN-2016-03720.en
dc.identifier.urihttps://doi.org/10.1016/j.ffa.2023.102281
dc.identifier.urihttp://hdl.handle.net/10012/20009
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesFinite Fields and Their Applications;92; 102281
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmonic irreducible factorsen
dc.subjectnormal orderen
dc.subjectErdős-Kac theoremen
dc.titleOn the number of irreducible factors with a given multiplicity in function fieldsen
dc.typeArticleen
dcterms.bibliographicCitationDas, S., Elma, E., Kuo, W., & Liu, Y.-R. (2023). On the number of irreducible factors with a given multiplicity in function fields. Finite Fields and Their Applications, 92, 102281. https://doi.org/10.1016/j.ffa.2023.102281en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023-irreducible-factors-multiplicity.pdf
Size:
369.94 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: