On the number of irreducible factors with a given multiplicity in function fields
dc.contributor.author | Das, Sourabhashis | |
dc.contributor.author | Elma, Ertan | |
dc.contributor.author | Kuo, Wentang | |
dc.contributor.author | Liu, Yu-Ru | |
dc.date.accessioned | 2023-10-03T15:17:29Z | |
dc.date.available | 2023-10-03T15:17:29Z | |
dc.date.issued | 2023-12 | |
dc.description | The final publication is available at Elsevier via https://doi.org/10.1016/j.ffa.2023.102281. © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.description.abstract | Let k ≥ 1 be a natural number and f ∈ Fq[t] be a monic polynomial. Let ωk(f) denote the number of distinct monic irreducible factors of f with multiplicity k. We obtain asymptotic estimates for the first and the second moments of ωk(f) with k ≥ 1. Moreover, we prove that the function ω1(f) has normal order log(deg(f)) and also satisfies the Erdős-Kac Theorem. Finally, we prove that the functions ωk(f) with k ≥ 2 do not have normal order. | en |
dc.description.sponsorship | NSERC Discovery Grant, RGPIN-2020-03915 || NSERC Discovery Grant, RGPIN-2016-03720. | en |
dc.identifier.uri | https://doi.org/10.1016/j.ffa.2023.102281 | |
dc.identifier.uri | http://hdl.handle.net/10012/20009 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Finite Fields and Their Applications;92; 102281 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | monic irreducible factors | en |
dc.subject | normal order | en |
dc.subject | Erdős-Kac theorem | en |
dc.title | On the number of irreducible factors with a given multiplicity in function fields | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Das, S., Elma, E., Kuo, W., & Liu, Y.-R. (2023). On the number of irreducible factors with a given multiplicity in function fields. Finite Fields and Their Applications, 92, 102281. https://doi.org/10.1016/j.ffa.2023.102281 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2023-irreducible-factors-multiplicity.pdf
- Size:
- 369.94 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.47 KB
- Format:
- Item-specific license agreed upon to submission
- Description: