The Reinforcement Learning Kelly Strategy

dc.contributor.authorJiang, Ruihong
dc.contributor.authorSaunders, David
dc.contributor.authorWeng, Chengguo
dc.date.accessioned2023-11-07T18:23:08Z
dc.date.available2023-11-07T18:23:08Z
dc.date.issued2022-03
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis in Quantitative Finance on 24 March 2022, available online: https://doi.org/10.1080/14697688.2022.2049356en
dc.description.abstractThe full Kelly portfolio strategy's deficiency in the face of estimation errors in practice can be mitigated by fractional or shrinkage Kelly strategies. This paper provides an alternative, the RL Kelly strategy, based on a reinforcement learning (RL) framework. RL algorithms are developed for the practical implementation of the RL Kelly strategy. Extensive simulation studies are conducted, and the results confirm the superior performance of the RL Kelly strategies.en
dc.description.sponsorshipNSERC, RGPIN-2017-04220 || NSERC, RGPIN-2016-04001.en
dc.identifier.urihttps://doi.org/10.1080/14697688.2022.2049356
dc.identifier.urihttp://hdl.handle.net/10012/20094
dc.language.isoenen
dc.publisherTaylor & Francisen
dc.relation.ispartofseriesQuantitative Finance;22(8)
dc.subjectKelly criterionen
dc.subjectfractional Kelly strategyen
dc.subjectportfolio selectionen
dc.subjectreinforcement learningen
dc.titleThe Reinforcement Learning Kelly Strategyen
dc.typeArticleen
dcterms.bibliographicCitationJiang, R., Saunders, D., & Weng, C. (2022). The reinforcement learning kelly strategy. Quantitative Finance, 22(8), 1445–1464. https://doi.org/10.1080/14697688.2022.2049356en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Statistics and Actuarial Scienceen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RL_Kelly_Revision_V8.pdf
Size:
559.17 KB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: