The Libraries will be performing routine maintenance on UWSpace on October 20th, 2025, from 10:00-10:30 pm ET. UWSpace will be unavailable during this time. Service should resume by 10:30 pm ET.
 

Development of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles

dc.contributor.authorZhuge, Kun
dc.date.accessioned2013-12-13T18:53:46Z
dc.date.available2013-12-13T18:53:46Z
dc.date.issued2013-12-13
dc.date.submitted2013
dc.description.abstractThe popularity of the internal combustion engine (ICE) vehicles has contributed to global warming problem and degradation of air quality around the world. Furthermore, the vehicles’ massive demand on gas has played a role in the depletion of fossil fuel reserves and the considerable rise in the gas price over the past twenty years. Those existing challenges force the auto-industry to move towards the technology development of vehicle electrification. An electrified vehicle is driven by one or more electric motors. And the electricity comes from the onboard energy storage system (ESS). Currently, no single type of green energy source could meet all the requirements to drive a vehicle. A hybrid energy storage system (HESS), as a combination of battery and ultra-capacitor units, is expected to improve the overall performance of vehicles’ ESS. This thesis focuses on the design of HESS and the development of a HESS prototype for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Battery unit (BU), ultra-capacitor unit (UC) and a DC/DC converter interfacing BU and UC are the three main components of HESS. The research work first reviews literatures regarding characteristics of BU, UC and power electronic converters. HESS design is then conducted based on the considerations of power capability, energy efficiency, size and cost optimization. Besides theoretical analysis, a HESS prototype is developed to prove the principles of operation as well. The results from experiment are compared with those from simulation.en
dc.identifier.urihttp://hdl.handle.net/10012/8085
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectsoft-switchingen
dc.subjectcapacitor-switched active snubber for interleaved bi-directional buck-boost DC/DC converteren
dc.subject.programElectrical and Computer Engineeringen
dc.titleDevelopment of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehiclesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhuge_Kun.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: