UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Investigation of Thorax Response and Potential for Injury in Side Impacts Using Integrated Detailed Human and Vehicle Finite-Element Models

dc.contributor.authorGierczycka, Donata
dc.date.accessioned2018-08-14T14:42:56Z
dc.date.available2018-08-14T14:42:56Z
dc.date.issued2018-08-14
dc.date.submitted2018-08-10
dc.description.abstractCar accidents are amongst the most common causes of fatalities for a younger population in developed countries and world-wide. While research using Anthropometric Test Devices (ATDs) has led to improvements in frontal impact occupant protection, epidemiological data on the effectiveness of devices for side impact protection remains inconclusive. Current regulatory physical side impact tests are limited to standardized full-vehicle Moving Deformable Barrier and rigid pole impacts, only one seating position of the occupant, and a unidirectional occupant surrogate (side impact ATD). To address some limitations of the existing research methods, and expand the understanding of the occupant response and potential for injury, numerical Human Body Models (HBMs) have been developed as repeatable, biofidelic, omni-directional, and frangible occupant surrogates. The overall goal of this study was to improve the understanding of the underlying sources of conflicting epidemiological and physical test data on thoracic response in side impacts. This study applied two highly detailed HBMs in parametric investigations with simple to complex impact scenarios ranging from a pendulum, rigid-wall side sled, to a full-vehicle lateral impact and an accident reconstruction. Subsequently, a thoracic side airbag and three-point seatbelt models were developed and integrated with the vehicle model to study the effect of occupant pre-crash position on the potential for injury. Occupant response assessment included global criteria (chest deflection and viscous criterion), local measurements at different thorax levels, spine kinematics, and prediction of rib fracture locations and lung response. This research identified limitations in current analysis methods, demonstrating effects on occupant response of pre-crash arm position, which is known to vary widely among occupants. The magnitude of the arm effect was dependent on the lateral impact scenario, where the occupant response demonstrated the highest sensitivity to arm orientation in the full vehicle impact. The arm position effect was more significant than changes in response to four restraint combinations, where the assessment of the restraint performance was also dependent on the thoracic response measurement locations and method. A parametric study using detailed HBM, vehicle and restraint models provided new understanding of occupant response in side impact crash scenarios.en
dc.identifier.urihttp://hdl.handle.net/10012/13589
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecthuman body modelsen
dc.subjectfinite element methoden
dc.subjectinjury biomechanicsen
dc.subjectside impacten
dc.titleInvestigation of Thorax Response and Potential for Injury in Side Impacts Using Integrated Detailed Human and Vehicle Finite-Element Modelsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorCronin, Duane
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gierczycka_Donata.pdf
Size:
7.21 MB
Format:
Adobe Portable Document Format
Description:
Revised thesis (Aug 13, 2018)
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: