Mortality prediction via age-specific band selection

dc.contributor.authorMeng, Yechao
dc.contributor.authorDiao, Liqun
dc.contributor.authorWeng, Chengguo
dc.date.accessioned2025-09-04T18:13:38Z
dc.date.available2025-09-04T18:13:38Z
dc.date.issued2025
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis in Scandinavian Actuarial Journal on August 5, 2025, available online: https://doi.org/10.1080/03461238.2025.2537925.
dc.description.abstractA novel mortality prediction framework, age-specific band selection, is proposed to borrow information from "neighboring" ages and train prediction models tailored for each individual age in a mortality table. This framework is further extended to borrow information across multiple populations through two proposed approaches: a distance-based approach and an ACF model-based approach. Extensive empirical studies with the Human Mortality Database are conducted to illustrate the enhanced prediction accuracy achieved by these methods.
dc.description.sponsorshipNSERC, RGPIN-2016-04396 || NSERC, 2023-03335 || Microsoft Canada, AI for Good.
dc.identifier.urihttps://doi.org/10.1080/03461238.2025.2537925
dc.identifier.urihttps://hdl.handle.net/10012/22342
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.ispartofseriesScandinavian Actuarial Journal
dc.subjectmortality prediction
dc.subjecthuman mortality database
dc.subjectage-specific band selection
dc.subjectclustering
dc.subjectK-nearest neighbor
dc.titleMortality prediction via age-specific band selection
dc.typeArticle
dcterms.bibliographicCitationMeng, Y., Diao, L., & Weng, C. (2025). Mortality prediction via age-specific band selection. Scandinavian Actuarial Journal, 1–25. https://doi.org/10.1080/03461238.2025.2537925
uws.contributor.affiliation1Faculty of Mathematics
uws.contributor.affiliation2Statistics and Actuarial Science
uws.peerReviewStatusReviewed
uws.scholarLevelFaculty
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
version for UWSpace.pdf
Size:
762.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: