Modeling of a-Si:H TFT I-V Characteristics in the Forward Subthreshold Operation
Loading...
Date
2005
Authors
Zhu, Lei
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
The hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are widely used as switching elements in LCD displays and large area matrix addressed senor arrays. In recent years, a-Si:H TFTs have been used as analog active components in OLED displays. However, a-Si:H TFTs exhibit a bias induced metastability. This problem causes both threshold voltage and subthreshold slope to shift with time when a gate bias is applied. These instabilities jeopardize the long-term performance of a-Si:H TFT circuits. Nevertheless a-Si:H TFTs show an exponential transfer characteristic in the subthreshold region. Moreover, the typical power consumptions for TFTs in the subthreshold region are in the order of nano-watts, thus making them suitable for low power design. For these reasons, a-Si:H TFT I-V characteristics in the forward subthreshold operation are investigated. First, we have derived the static and dynamic models of a-Si:H TFT in the forward subthreshold region. Second, we have verified our theoretical models with experimental results. Third, we have proven that a-Si:H TFT experiences no subthreshold slope degradation or threshold voltage shift in the forward subthreshold operation. Finally, we have studied a-Si:H TFT current mirror circuit applications. Measurements regarding the fidelity of current matching in the forward subthreshold region have been performed, and results are shown.
Description
Keywords
Electrical & Computer Engineering, thin-film transistor, device modeling, subthreshold operation