UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue

Loading...
Thumbnail Image

Date

2019-05-16

Authors

Khaled, Abir
Gionfriddo, Emanuela
Acquaro Jr, Vinicius
Singh, Varoon
Pawliszyn, Janusz

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

This paper presents the development and validation of a fully automated, high-throughput multiclass, multiresidue method for quantitative analysis of 77 veterinary drugs in chicken muscle via direct immersion solid phase microextraction (DI-SPME) and ultra-high pressure liquid chromatography-electrospray ionization - tandem mass spectrometry (UHPLC-ESI-MS/MS). The selected drugs represent more than 12 different classes of drugs characterized by varying physical and chemical properties. A Hydrophilic–lipophilic balance (HLB)/polyacrylonitrile (PAN) extraction phase, prepared using HLB particles synthesized in-house, yielded the best extraction/desorption performance among four different SPME extraction phases evaluated in the current work. The developed SPME method was optimized in terms of SPME coating and geometry, desorption solvent, extraction and rinsing conditions, and extraction and desorption times. Multivariate analysis was performed to determine the optimal desorption solvent for the proposed application. The developed method was validated according to the Food and Drug Administration (FDA) guidelines, taking into account Canadian maximum residue limits (MRLs) and US maximum tolerance levels for veterinary drugs in meat. Method accuracy ranged from 80 to 120% for at least 73 compounds, with relative standard deviation of 1–15%. Inter-day precision ranged from 4 to 15% for 70 compounds. Determination coefficients values were higher than 0.991 for all compounds under study with no significant lack of fit (p > 0.05) at the 5% level. In terms of limits of quantitation, the method was able to meet both Canadian and US regulatory levels for all compounds under study.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.aca.2018.12.044. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

veterinary drugs, multi-class multi-residue analysis, solid phase microextraction, method development and validation, UHPLC-MS/MS

LC Keywords

Citation