Waring's problem in function fields

dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorWooley, Trevor D.
dc.date.accessioned2023-10-03T14:55:12Z
dc.date.available2023-10-03T14:55:12Z
dc.date.issued2010
dc.descriptionThis article is published in the Journal fur die reine und angewandte Mathematik, https://doi.org/10.1515/crelle.2010.001en
dc.description.abstractLet Fq½t denote the ring of polynomials over the finite field Fq of characteristic p, and write Jk q ½t for the additive closure of the set of kth powers of polynomials in Fq½t. Define GqðkÞ to be the least integer s satisfying the property that every polynomial in Jk q ½t of su‰ciently large degree admits a strict representation as a sum of s kth powers. We employ a version of the Hardy-Littlewood method involving the use of smooth polynomials in order to establish a bound of the shape GqðkÞeCk log k þ Oðk log log kÞ. Here, the coe‰cient C is equal to 1 when k < p, and C is given explicitly in terms of k and p when k > p, but in any case satisfies C e4=3. There are associated conclusions for the solubility of diagonal equations over Fq½t, and for exceptional set estimates in Waring’s problem.en
dc.description.sponsorshipResearch partially supported by an NSERC Discovery Grant || Research partially supported by NSF grant, DMS-0601367.en
dc.identifier.urihttps://doi.org/10.1515/crelle.2010.001
dc.identifier.urihttp://hdl.handle.net/10012/19988
dc.language.isoenen
dc.publisherDe Gruyteren
dc.relation.ispartofseriesJournal fur die reine und angewandte Mathematik;638
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleWaring's problem in function fieldsen
dc.typeArticleen
dcterms.bibliographicCitationLiu, Y.-R., &amp; Wooley, T. D. (2010). Waring’s problem in function fields. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 2010(638), 1–67. https://doi.org/10.1515/crelle.2010.001en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15-published.pdf
Size:
509.75 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: