ALGEBRAIC DEGREE IN SPATIAL MATRICIAL NUMERICAL RANGES OF LINEAR OPERATORS
dc.contributor.author | Bernik, Janez | |
dc.contributor.author | Livshits, Leo | |
dc.contributor.author | MacDonald, Gordon W. | |
dc.contributor.author | Marcoux, Laurent W. | |
dc.contributor.author | Mastnak, Mitja | |
dc.contributor.author | Radjavi, Heydar | |
dc.date.accessioned | 2022-05-10T18:51:22Z | |
dc.date.available | 2022-05-10T18:51:22Z | |
dc.date.issued | 2021-07-20 | |
dc.description | First published in Proceedings of the American Mathematical Society in volume 149, issue 10 in 2021, published by the American Mathematical Society | en |
dc.description.abstract | We study the maximal algebraic degree of principal ortho-compressions of linear operators that constitute spatial matricial numerical ranges of higher order. We demonstrate (amongst other things) that for a (possibly unbounded) operator L on a Hilbert space, every principal m-dimensional ortho-compression of L has algebraic degree less than m if and only if rank(L − λI) ≤ m − 2 for some λ ∈ C | en |
dc.description.sponsorship | The first author’s research was supported in part by Research and Development Agency of Slovenia grant P1-0222. The second author’s research was supported by Colby College Natural Sciences Division Grant. The third, fourth, and fifth authors’ research was supported in part by NSERC (Canada). | en |
dc.identifier.uri | https://doi.org/10.1090/proc/15523 | |
dc.identifier.uri | http://hdl.handle.net/10012/18251 | |
dc.language.iso | en | en |
dc.publisher | American Mathematical Society | en |
dc.subject | spatial matricial numerical ranges | en |
dc.subject | algebraic degree | en |
dc.subject | rank modulo scalars | en |
dc.subject | orthogonal compressions | en |
dc.subject | principal submatrices | en |
dc.subject | cyclic matrices | en |
dc.subject | non-derogatory matrices | en |
dc.title | ALGEBRAIC DEGREE IN SPATIAL MATRICIAL NUMERICAL RANGES OF LINEAR OPERATORS | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Bernik, J., Livshits, L., MacDonald G. W., Marcoux L. W., Mastnak, M., Radjavi, H. (2021, July 20). Algebraic degree in spatial matricial numerical ranges of linear operators. Proceedings of the American Mathematical Society, 149(10), 4083-4097. https://doi.org/10.1090/proc/15523 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- BernikJ LivshitsL MacDonaldGW MarcouxLW MastnakM RadjaviH 2020 Algebraic degree in spatial matricial numerical ranges of linear operators.pdf
- Size:
- 364.18 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.47 KB
- Format:
- Item-specific license agreed upon to submission
- Description: