Ignition Delay of Non-Premixed Methane-Air Mixtures using Conditional Moment Closure (CMC)

Loading...
Thumbnail Image

Date

2007-09-28T15:43:50Z

Authors

El Sayed, Ahmad

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Autoignition of non-premixed methane-air mixtures is investigated using first-order Conditional Moment closure (CMC). In CMC, scalar quantities are conditionally averaged with respect to a conserved scalar, usually the mixture fraction. The conditional fluctuations are often of small order, allowing the chemical source term to be modeled as a function of the conditional species concentrations and the conditional enthalpy (temperature). The first-order CMC derivation leaves many terms unclosed such as the conditional scalar dissipation rate, velocity and turbulent fluxes, and the probability density function. Submodels for these quantities are discussed and validated against Direct Numerical Simulations (DNS). The CMC and the turbulent velocity and mixing fields calculations are decoupled based on the frozen mixing assumption, and the CMC equations are cross-stream averaged across the flow following the shear flow approximation. Finite differences are used to discretize the equations, and a two-step fractional method is implemented to treat separately the stiff chemical source term. The stiff ODE solver LSODE is used to solve the resulting system of equations. The recently developed detailed chemical kinetics mechanism UBC-Mech 1.0 is employed throughout this study, and preexisting mechanisms are visited. Several ignition criteria are also investigated. Homogeneous and inhomogeneous CMC calculations are performed in order to investigate the role of physical transport in autoignition. Furthermore, the results of the perfectly homogeneous reactor calculations are presented and the critical value of the scalar dissipation rate for ignition is determined. The results are compared to the shock tube experimental data of Sullivan et al. The current results show good agreement with the experiments in terms of both ignition delay and ignition kernel location, and the trends obtained in the experiments are successfully reproduced. The results were shown to be sensitive to the scalar dissipation model, the chemical kinetics, and the ignition criterion.

Description

Keywords

Turbulent Combustion Modeling, Non-premixed Autoignition, Conditional Moment Closure, Ignition Delay

LC Subject Headings

Citation